Research Article

Hybrid Online and Offline Reinforcement Learning for Tibetan Jiu Chess

Table 1

The experimental parameters.

Toolkit packageCNTK 2.7

Runtime.Net 4.7.2
Operating systemWindows 10
Central processing unitAMD 2700X@4.0 GHz
Random access memory32 GB
Graphics processing unitRTX2070
Threads used16
Development environmentVisual Studio 2017 Community
0.1
Step200
Learning rate0.001
(Q-learning)0.628
(SARSA)0.372