Research Article
Hybrid Online and Offline Reinforcement Learning for Tibetan Jiu Chess
Table 1
The experimental parameters.
| Toolkit package | CNTK 2.7 |
| Runtime | .Net 4.7.2 | Operating system | Windows 10 | Central processing unit | AMD 2700X@4.0 GHz | Random access memory | 32 GB | Graphics processing unit | RTX2070 | Threads used | 16 | Development environment | Visual Studio 2017 Community | | 0.1 | Step | 200 | Learning rate | 0.001 | (Q-learning) | 0.628 | (SARSA) | 0.372 |
|
|