Research Article
Airport Arrival Flow Prediction considering Meteorological Factors Based on Deep-Learning Methods
Table 3
Comparison of performances for different methods.
| | Prediction time horizon (min) | Incorporated features | Model | MAE | RMSE | MAPEa (%) |
| | 30 | Historic and scheduled flights | BP | 1.623 | 2.188 | 16.657 | | SVM | 1.825 | 2.489 | 23.972 | | GBRT | 1.628 | 2.179 | 16.132 | | LSTM | 1.580 | 2.107 | 14.839 | | XGBoost | 1.607 | 2.176 | 15.050 | | LSTM-XGBoost | 1.634 | 2.286 | 15.005 | | Historic and scheduled flights and meteorological variables | BP | 1.594 | 2.148 | 16.243 | | SVM | 1.668 | 2.211 | 23.474 | | GBRT | 1.532 | 2.047 | 15.257 | | LSTM | 1.557 | 2.095 | 14.515 | | XGBoost | 1.511 | 2.023 | 15.036 | | LSTM-XGBoost | 1.443 | 1.989 | 14.735 |
| | 60 | Historic and scheduled flights | BP | 2.408 | 3.457 | 13.447 | | SVM | 2.611 | 3.714 | 16.183 | | GBRT | 2.334 | 3.301 | 11.424 | | LSTM | 2.406 | 3.254 | 15.279 | | XGBoost | 2.307 | 3.301 | 11.071 | | LSTM-XGBoost | 2.319 | 3.331 | 11.730 | | Historic and scheduled flights and meteorological variables | BP | 2.347 | 3.311 | 11.557 | | SVM | 2.447 | 3.439 | 14.829 | | GBRT | 2.324 | 3.235 | 11.279 | | LSTM | 2.365 | 3.262 | 17.672 | | XGBoost | 2.191 | 3.054 | 10.783 | | LSTM-XGBoost | 2.065 | 2.934 | 10.834 |
| | 120 | Historic and scheduled flights | BP | 3.299 | 5.171 | 9.038 | | SVM | 3.336 | 5.491 | 9.372 | | GBRT | 3.230 | 4.940 | 8.693 | | LSTM | 3.352 | 5.376 | 9.359 | | XGBoost | 3.128 | 4.933 | 8.398 | | LSTM-XGBoost | 3.330 | 5.387 | 8.917 | | Historic and scheduled flights and meteorological variables | BP | 3.166 | 5.070 | 8.452 | | SVM | 3.160 | 5.187 | 9.146 | | GBRT | 3.051 | 4.782 | 8.242 | | LSTM | 3.275 | 4.751 | 8.630 | | XGBoost | 3.039 | 4.734 | 8.031 | | LSTM-XGBoost | 2.889 | 4.591 | 7.811 |
|
|
aMAPE covers the top 50% highest arrival flow samples in the test dataset.
|