Review Article

Machine Learning Techniques for Quantification of Knee Segmentation from MRI

Table 2

Semiautomated segmentation approaches.

StudyMR sampleNumber of subjectsMethods usedEfficiency measures

[63]PDW SPAIR12 subjectsRandom forestFemur DSC 94.9%
Tibia DSC 92.5%
[27]T1-weighted axial103 subjectsSupport vector machineAccuracy 72%
[58]CCBR159 subjectsPLDS methodDice volume 0.82
[64]3D SGPR4 subjectsRegion growingError −6.53%
[65]T1-weighted image5 subjectsActive shape modelMean error −0.57
[66]Flash 3D15 subjectsB-spline with manual adjustmentInterobserver 3.3 to 13.6
[45]3DMR20 subjectsActive contourThickness 0.996 and 0.998 for femur and tibia
[4]SPGR7 subjectsWatershed transformationDSC 89.5%
Sensitivity 90%
Specificity 99.9%
[23]3D DESS320 slicesGraph-cut algorithmDSC 94.3%
[67]Flash GRE50 subjectsK-means with manual adjustmentDSC 0.77 and 0.80
Sensitivity 83.1 and 85.3
Specificity 99.9 and 099.9 for femur and tibia bones, respectively
[68]DESS17 subjectsSupport vector machineDSC patella 0.82, tibia 0.83, and femur 0.86
[23]3T MR images10 subjectsGraph-cut methodDSC 0.943
[13]3D DESS12 subjectsActive contour modelRoot mean square 0.8% to 1.3%
[69]3D DESS10 subjectsMesh morphing approachMean S.D of femur 0.87, tibia 0.40 and, patella 0.53
[70]T1-weighted15 subjectsWatershed methodCartilage volume tibia 3.3 mm