Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 10
RMSE analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | 0.2627 | 0.3377 | 0.3046 | 0.3627 | 0.3818 | 0.2605 | 0.2358 | 0.064 | 0.2971 | 0.278 | | CS-Forest | 0.2985 | 0.3449 | 0.3307 | 0.379 | 0.3766 | 0.2919 | 0.2504 | 0.0645 | 0.3088 | 0.3036 | | DS | 0.2995 | 0.3046 | 0.297 | 0.3569 | 0.3712 | 0.2565 | 0.2457 | 0.0631 | 0.2908 | 0.2923 | | Forest-PA | 0.2667 | 0.2836 | 0.292 | 0.3422 | 0.3709 | 0.2538 | 0.2349 | 0.642 | 0.2867 | 0.2687 | | HT | 0.2628 | 0.3871 | 0.2979 | 0.402 | 0.3987 | 0.2665 | 0.2542 | 0.0639 | 0.3031 | 0.3236 | | J48 | 0.2997 | 0.3424 | 0.3301 | 0.3968 | 0.43 | 0.2751 | 0.2441 | 0.064 | 0.3151 | 0.299 | | LMT | 0.4646 | 0.3254 | 0.4322 | 0.339 | 0.3918 | 0.243 | 0.315 | 0.4199 | 0.3917 | 0.2683 | | RF | 0.2856 | 0.2724 | 0.2951 | 0.349 | 0.3667 | 0.2613 | 0.2223 | 0.0647 | 0.2715 | 0.247 | | RT | 0.3309 | 0.3563 | 0.4089 | 0.4392 | 0.542 | 0.3652 | 0.3014 | 0.0899 | 0.3786 | 0.3652 | | REP-T | 0.2627 | 0.3438 | 0.3102 | 0.3733 | 0.4093 | 0.275 | 0.2365 | 0.064 | 0.2944 | 0.2768 |
|
|