Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 13
Specificity analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | ? | ? | 0 | 0.6098 | 0.8398 | 0.5 | 0.5714 | ? | 0.2632 | 0.9162 | | CS-Forest | 0.2 | 0.4 | 0.2432 | 0.4942 | 0.8144 | 0.2778 | 0.3820 | 0.1667 | 0.3587 | 0.8898 | | DS | 0 | 0.75 | ? | 0.5038 | 0.8639 | 0.3530 | ? | ? | ? | 0.8779 | | Forest-PA | 0 | 0.6667 | 0 | 0.6567 | 0.8115 | 0 | 0.6923 | ? | 0.4545 | 0.9109 | | HT | ? | 0.375 | ? | 0.6389 | 0.8135 | ? | ? | ? | ? | 0.8814 | | J48 | 0.2857 | 0.5 | 0.1765 | 0.5521 | 0.8554 | 0.4546 | 0.5455 | ? | 0.4369 | 0.9426 | | LMT | 0 | 0.5 | 0.1429 | 0.7049 | 0.843 | 0.7143 | 0.2308 | 0 | 0.1875 | 0.9166 | | RF | 0 | 0.7143 | 0.2727 | 0.622 | 0.8315 | 0.4615 | 0.5897 | ? | 0.5556 | 0.9212 | | RT | 0.25 | 0.5 | 0.2167 | 0.5393 | 0.8176 | 0.2051 | 0.362 | 0.0417 | 0.2829 | 0.9229 | | REP-T | ? | 0.5 | 0 | 0.5846 | 0.8315 | 0.2 | 0.5882 | ? | 0.4375 | 0.9216 |
|
|