Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 14
Precision analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | 1 | 1 | 0.9911 | 0.9229 | 0.1944 | 0.9919 | 0.9855 | 1 | 0.99 | 0.3652 | | CS-Forest | 0.8929 | 0.8909 | 0.8753 | 0.7904 | 0 | 0.9301 | 0.9467 | 0.9991 | 0.8738 | 0.1124 | | DS | 0.9821 | 0.9818 | 1 | 0.8434 | 0.3611 | 0.9704 | 1 | 1 | 1 | 0 | | Forest-PA | 0.9911 | 0.9818 | 0.9978 | 0.9446 | 0 | 0.9973 | 0.9961 | 1 | 0.9957 | 0.309 | | HT | 1 | 0.9091 | 1 | 0.9373 | 0 | 1 | 1 | 1 | 1 | 0.0337 | | J48 | 0.9554 | 0.9273 | 0.9688 | 0.8964 | 0.3333 | 0.9839 | 0.9855 | 1 | 0.9587 | 0.5899 | | LMT | 0.9911 | 0.9636 | 0.9866 | 0.9566 | 0.25 | 0.9946 | 0.9903 | 0.9998 | 0.9907 | 0.3596 | | RF | 0.9732 | 0.9636 | 0.9822 | 0.9253 | 0.1389 | 0.9812 | 0.9845 | 1 | 0.9829 | 0.3989 | | RT | 0.9464 | 0.9273 | 0.8953 | 0.9012 | 0.1944 | 0.9167 | 0.9506 | 0.9959 | 0.9223 | 0.4438 | | REP-T | 1 | 0.9818 | 0.9889 | 0.9349 | 0.1667 | 0.9892 | 0.9864 | 1 | 0.9936 | 0.4101 |
|
|