Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 15
Recall analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | 0.9256 | 0.873 | 0.9008 | 0.8705 | 0.5385 | 0.9295 | 0.9469 | 0.9959 | 0.8996 | 0.5909 | | CS-Forest | 0.9434 | 0.9245 | 0.9269 | 0.9371 | ? | 0.9428 | 0.9578 | 0.9961 | 0.9526 | 0.8333 | | DS | 0.9244 | 0.9153 | 0.9016 | 0.8951 | 0.52 | 0.9352 | 0.9306 | 0.9959 | 0.8976 | ? | | Forest-PA | 0.925 | 0.9 | 0.9014 | 0.8615 | 0 | 0.9229 | 0.938 | 0.9959 | 0.9001 | 0.7143 | | HT | 0.9256 | 0.9091 | 0.9016 | 0.8644 | 0 | 0.9231 | 0.9306 | 0.9959 | 0.8976 | 0.75 | | J48 | 0.9386 | 0.9273 | 0.9044 | 0.8732 | 0.4286 | 0.9337 | 0.9452 | 0.9959 | 0.9212 | 0.5615 | | LMT | 0.925 | 0.8983 | 0.9022 | 0.8612 | 0.4091 | 0.9343 | 0.9325 | 0.9959 | 0.8985 | 0.7033 | | RF | 0.9237 | 0.9464 | 0.9055 | 0.8727 | 0.5 | 0.9359 | 0.9495 | 0.9959 | 0.9139 | 0.71 | | RT | 0.9381 | 0.9273 | 0.9178 | 0.8637 | 0.2 | 0.9368 | 0.9534 | 0.996 | 0.9171 | 0.454 | | REP-T | 0.9256 | 0.8852 | 0.9006 | 0.849 | 0.375 | 0.9246 | 0.947 | 0.9959 | 0.9011 | 0.6186 |
|
|