Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 16
F-measure analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | 0.9614 | 0.9322 | 0.9438 | 0.8959 | 0.2857 | 0.9597 | 0.9658 | 0.9979 | 0.9427 | 0.4514 | | CS-Forest | 0.9174 | 0.9074 | 0.9003 | 0.8575 | ? | 0.9364 | 0.9522 | 0.9976 | 0.9115 | 0.198 | | DS | 0.9524 | 0.9474 | 0.9483 | 0.8685 | 0.4262 | 0.9525 | 0.964 | 0.9979 | 0.9461 | ? | | Forest-PA | 0.9569 | 0.9391 | 0.9471 | 0.9011 | ? | 0.9587 | 0.9662 | 0.9979 | 0.9455 | 0.4314 | | HT | 0.9614 | 0.9091 | 0.9483 | 0.8994 | ? | 0.96 | 0.964 | 0.9979 | 0.9461 | 0.0645 | | J48 | 0.9469 | 0.9273 | 0.9355 | 0.8847 | 0.375 | 0.9581 | 0.9649 | 0.9979 | 0.9396 | 0.5753 | | LMT | 0.9569 | 0.9298 | 0.9426 | 0.9064 | 0.3103 | 0.9635 | 0.9605 | 0.9978 | 0.9424 | 0.4758 | | RF | 0.9478 | 0.955 | 0.9423 | 0.8982 | 0.2174 | 0.958 | 0.9667 | 0.9979 | 0.9471 | 0.5108 | | RT | 0.9422 | 0.9273 | 0.9064 | 0.8821 | 0.1972 | 0.9266 | 0.952 | 0.996 | 0.9197 | 0.4489 | | REP-T | 0.9614 | 0.931 | 0.9427 | 0.8899 | 0.2308 | 0.9558 | 0.9663 | 0.9979 | 0.9451 | 0.4932 |
|
|