Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 17
G-measure analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | ? | ? | 0 | 0.7171 | 0.6562 | 0.6502 | 0.7128 | ? | 0.4072 | 0.7184 | | CS-Forest | 0.33 | 0.5584 | 0.3854 | 0.6471 | ? | 0.4291 | 0.546 | 0.2856 | 0.5212 | 0.8607 | | DS | 0 | 0.8244 | ? | 0.6447 | 0.6492 | 0.5125 | ? | ? | ? | ? | | Forest-PA | 0 | 0.766 | 0 | 0.7453 | 0 | 0 | 0.7966 | ? | 0.6041 | 0.8007 | | HT | ? | 0.531 | ? | 0.7347 | 0 | ? | ? | ? | ? | 0.8104 | | J48 | 0.4381 | 0.6497 | 0.2953 | 0.6765 | 0.571 | 0.6114 | 0.6917 | ? | 0.5927 | 0.7038 | | LMT | 0 | 0.6424 | 0.2467 | 0.7752 | 0.5509 | 0.8096 | 0.37 | 0 | 0.3103 | 0.7959 | | RF | 0 | 0.8141 | 0.4192 | 0.7263 | 0.6245 | 0.6182 | 0.7276 | ? | 0.691 | 0.8019 | | RT | 0.3948 | 0.6497 | 0.3506 | 0.664 | 0.3214 | 0.3366 | 0.5253 | 0.08 | 0.4324 | 0.6086 | | REP-T | ? | 0.6391 | 0 | 0.6924 | 0.5169 | 0.3289 | 0.7257 | ? | 0.589 | 0.7403 |
|
|