Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 18
MCC analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | ? | ? | −0.0297 | 0.4329 | 0.2433 | 0.1952 | 0.3565 | ? | 0.0588 | 0.4091 | | CS-Forest | 0.1801 | 0.3562 | 0.2032 | 0.5022 | ? | 0.2361 | 0.3633 | 0.0832 | 0.3916 | 0.2811 | | DS | −0.0367 | 0.4872 | ? | 0.4285 | 0.3309 | 0.2174 | ? | ? | ? | ? | | Forest-PA | −0.0259 | 0.3624 | −0.0148 | 0.4294 | −0.0598 | −0.0144 | 0.2669 | ? | 0.0978 | 0.4271 | | HT | ? | 0.2841 | ? | 0.4299 | −0.0344 | ? | ? | ? | ? | 0.1425 | | J48 | 0.1996 | 0.4273 | 0.0493 | 0.4082 | 0.2567 | 0.2374 | 0.328 | ? | 0.2931 | 0.5148 | | LMT | −0.0259 | 0.2917 | 0.0178 | 0.4505 | 0.2056 | 0.318 | 0.0691 | −0.0009 | 0.0286 | 0.4581 | | RF | −0.0452 | 0.6236 | 0.088 | 0.4459 | 0.1886 | 0.2635 | 0.3908 | ? | 0.2828 | 0.4873 | | RT | 0.1781 | 0.4273 | 0.147 | 0.3755 | 0.0174 | 0.1575 | 0.3215 | 0.0385 | 0.1955 | 0.3732 | | REP-T | ? | 0.2029 | -0.0333 | 0.3547 | 0.1461 | 0.0518 | 0.363 | ? | 0.1124 | 0.4501 |
|
|