Research Article

Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects

Table 19

Results of different TF-ML techniques in terms of accuracy along with the rank values.

DatasetsCDTCS-forestDSForest-PAHTJ48LMTRFRTREP-T

AR192.56 (1.3)85.12 (6)90.90 (3)91.73 (2.5)92.56 (1.3)90.08 (4.5)91.73 (2.5)90.08 (4.5)89.25 (5)92.56 (1.3)
AR387.30 (4.2)84.12 (5.2)90.4762 (2)88.88 (3)84.12 (5.2)87.30 (4.2)87.30 (4.2)92.06 (1)87.30 (4.2)87.30 (4.2)
CM189.35 (3)82.53 (7)90.16 (1.2)89.95 (2)90.16 (1.2)87.95 (5)89.15 (4.3)89.15 (4.3)83.33 (6)89.15 (4.3)
KC282.95 (4)79.11 (9)79.69 (8)83.52 (2)83.33 (3.5)81.41 (6)84.29 (1)83.33 (3.5)80.84 (7)81.60 (5)
KC381.95 (1.2)81.44 (2.5)81.95 (1.2)79.89 (4)80.92 (3)79.38 (5.3)79.38 (5.3)81.44 (2.5)70.61 (6)79.38 (5.3)
MW192.30 (2.5)88.33 (6)91.06 (5)92.05 (3.3)92.30 (2.5)92.05 (3.3)93.05 (1)92.05 (3.3)86.60 (7)91.56 (4)
PC193.50 (3.5)91.16 (7)93.05 (5.2)93.50 (3.5)93.05 (5.2)93.32 (4)92.42 (6)93.68 (1)91.07 (8)93.59 (2)
PC299.58 (1.14)99.51 (3)99.58 (1.14)99.58 (1.14)99.58 (1.14)99.58 (1.14)99.57 (2)99.58 (1.14)99.19 (4)99.58 (1.14)
PC389.18 (5)84.77 (9)89.76 (2.5)89.69 (3)89.76 (2.5)88.93 (7)89.12 (6)90.14 (1)85.54 (8)89.63 (4)
PC489.16 (6)88.88 (7)87.79 (9)90.05 (3)88.06 (8)89.36 (5)90.32 (2)90.67 (1)86.69 (10)89.71 (4)
Sum (rank)31.8461.738.2427.4433.5445.4434.323.2465.235.24
Average (rank)3.186.173.822.743.354.543.432.326.523.52
Sum (Acc)897.88865.02894.46898.91893.89889.41896.36902.23860.45894.10
Average (Acc)89.7886.5089.4489.8989.3888.9489.6390.2286.0489.41

It ranks the technique for each data set separately, the best performing algorithm getting the rank of 1 and the second-best rank 2. Last two columns present the sum and average of ranks for each technique.