Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 2
Attributes, instances, defective, and nondefective modules of each utilized dataset.
| | S. no. | Datasets | No. of attributes | No. of instances | No. of defective modules | No. of nondefective modules | Data type |
| | 1 | AR1 | 30 | 121 | 9 | 7.4% | 112 | 92.6% | Numerical | | 2 | AR3 | 30 | 63 | 8 | 12.7% | 55 | 87.3% | Numerical | | 3 | CM1 | 22 | 498 | 49 | 9.8% | 449 | 90.2% | Numerical | | 4 | KC2 | 22 | 522 | 107 | 20.5% | 415 | 79.5% | Numerical | | 5 | KC3 | 40 | 194 | 36 | 18.6% | 158 | 81.4% | Numerical | | 6 | MW1 | 41 | 403 | 31 | 8.0% | 372 | 92.0% | Numerical | | 7 | PC1 | 22 | 1109 | 77 | 6.9% | 1032 | 93.1% | Numerical | | 8 | PC2 | 41 | 5589 | 23 | 0.5% | 5566 | 99.5% | Numerical | | 9 | PC3 | 41 | 1563 | 160 | 10.1% | 1403 | 89.9% | Numerical | | 10 | PC4 | 41 | 1458 | 178 | 12.2% | 1280 | 87.8% | Numerical |
|
|