Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 21
Decision table for experimental scenario 3.
| | Datasets | Evaluation measurements | | Specificity | Precision | Recall | F-measure | G-measure | MCC | Accuracy |
| | AR1 | J48 | CDT, HT, REP-T | CS-Forest | CDT, HT, REP-T | J48 | J48 | CDT, REP-T | | AR3 | DS | CDT | RF | RF | DS | RF | RF | | CM1 | RF | DS, HT | CS-Forest | DS, HT | RF | CS-Forest | DS, HT | | KC2 | LMT | LMT | CS-Forest | LMT | LMT | CS-Forest | LMT | | KC3 | DS | DS | CDT | DS | CDT | DS | CDT, DS | | MW1 | LMT | HT | CS-Forest | LMT | LMT | LMT | LMT | | PC1 | Forest-PA | DS, HT | CS-Forest | RF | Forest-PA | RF | RF | | PC2 | CS-Forest | Seven techniques | CS-Forest | Seven techniques | CS-Forest | CS-Forest | Seven techniques | | PC3 | RF | DS, HT | CS-Forest | RF | RF | CS-Forest | RF | | PC4 | J48 | J48 | CS-Forest | J48 | CS-Forest | J48 | RF |
|
|