Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 6
True-positive rate analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | 0.926 | 0.873 | 0.894 | 0.83 | 0.82 | 0.923 | 0.935 | 0.996 | 0.892 | 0.892 | | CS-Forest | 0.851 | 0.841 | 0.825 | 0.791 | 0.814 | 0.883 | 0.912 | 0.995 | 0.848 | 0.889 | | DS | 0.909 | 0.905 | 0.902 | 0.797 | 0.82 | 0.911 | 0.931 | 0.996 | 0.898 | 0.878 | | Forest-PA | 0.917 | 0.889 | 0.9 | 0.835 | 0.799 | 0.921 | 0.935 | 0.996 | 0.897 | 0.901 | | HT | 0.926 | 0.841 | 0.902 | 0.833 | 0.809 | 0.923 | 0.931 | 0.996 | 0.898 | 0.881 | | J48 | 0.901 | 0.873 | 0.88 | 0.814 | 0.794 | 0.921 | 0.933 | 0.996 | 0.889 | 0.894 | | LMT | 0.917 | 0.873 | 0.892 | 0.843 | 0.794 | 0.931 | 0.924 | 0.996 | 0.891 | 0.903 | | RF | 0.901 | 0.921 | 0.892 | 0.833 | 0.814 | 0.921 | 0.937 | 0.996 | 0.901 | 0.907 | | RT | 0.893 | 0.873 | 0.833 | 0.808 | 0.706 | 0.866 | 0.911 | 0.992 | 0.855 | 0.867 | | REP-T | 0.926 | 0.873 | 0.892 | 0.816 | 0.794 | 0.916 | 0.936 | 0.996 | 0.896 | 0.897 |
|
|