Research Article
Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects
Table 7
False-positive rate analysis by each TF-ML technique on individual dataset.
| | Technique | AR1 | AR3 | CM1 | KC2 | KC3 | MW1 | PC1 | PC2 | PC3 | PC4 |
| | CDT | 0.926 | 0.873 | 0.902 | 0.439 | 0.663 | 0.834 | 0.69 | 0.996 | 0.871 | 0.562 | | CS-Forest | 0.625 | 0.45 | 0.583 | 0.206 | 0.814 | 0.631 | 0.523 | 0.953 | 0.355 | 0.78 | | DS | 0.927 | 0.548 | 0.902 | 0.337 | 0.534 | 0.747 | 0.931 | 0.996 | 0.898 | 0.878 | | Forest-PA | 0.926 | 0.657 | 0.902 | 0.479 | 0.818 | 0.923 | 0.822 | 0.996 | 0.97 | 0.609 | | HT | 0.926 | 0.557 | 0.902 | 0.466 | 0.816 | 0.923 | 0.931 | 0.996 | 0.898 | 0.849 | | J48 | 0.723 | 0.446 | 0.849 | 0.422 | 0.562 | 0.775 | 0.714 | 0.996 | 0.649 | 0.368 | | LMT | 0.926 | 0.659 | 0.885 | 0.484 | 0.626 | 0.775 | 0.895 | 0.996 | 0.882 | 0.565 | | RF | 0.928 | 0.332 | 0.848 | 0.431 | 0.707 | 0.746 | 0.654 | 0.996 | 0.731 | 0.531 | | RT | 0.724 | 0.446 | 0.673 | 0.459 | 0.689 | 0.691 | 0.584 | 0.953 | 0.664 | 0.497 | | REP-T | 0.926 | 0.766 | 0.903 | 0.526 | 0.69 | 0.894 | 0.69 | 0.996 | 0.859 | 0.522 |
|
|