Research Article
Complexity to Forecast Flood: Problem Definition and Spatiotemporal Attention LSTM Solution
Table 5
Comparisons on Changhua dataset with several comparative methods. Note that bold texts indicate best performance among comparative methods.
| Models | RT+3 | RT+6 | RT+9 | RA | MT+3 (%) | MT+6 (%) | MT+9 (%) | MA (%) | DT+3 | DT+6 | DT+9 | DA |
| FCN | 56.87 | 88.36 | 129.7 | 91.63 | 14.22 | 22.09 | 32.41 | 22.91 | 0.84 | 0.64 | 0.31 | 0.60 | SVM | 60.89 | 86.34 | 110.6 | 85.93 | 15.22 | 21.59 | 27.64 | 21.48 | 0.82 | 0.67 | 0.53 | 0.67 | LSTM | 66.11 | 84.49 | 109.2 | 86.60 | 16.53 | 21.12 | 27.30 | 21.65 | 0.79 | 0.68 | 0.54 | 0.67 | XAJ model | 77.30 | 68.31 | 69.25 | 71.62 | 19.26 | 17.09 | 17.45 | 17.93 | 0.65 | 0.70 | 0.71 | 0.69 | STA-LSTM | 52.37 | 78.36 | 94.55 | 75.09 | 13.09 | 19.59 | 23.64 | 18.77 | 0.85 | 0.71 | 0.62 | 0.73 |
|
|