Research Article

Hybrid Deep-Learning Framework Based on Gaussian Fusion of Multiple Spatiotemporal Networks for Walking Gait Phase Recognition

Table 1

Summary of classification performance of different models at unsynchronized speed.

ModelSpeed0.78 m/s1.0 m/s1.25 m/s
PhaseHSFFHOSWHSFFHOSWHSFFHOSW

BaggingPrecision (%)084.785.998.1086.587.597.2084.380.497.3
Recall (%)096.285.194.6097.588.493.4097.681.091.3
F1 (%)090.185.596.3091.788.095.3090.580.794.2

AdaBoostingPrecision (%)48.891.892.296.942.190.894.297.240.790.496.096.3
Recall (%)52.690.493.497.053.791.791.994.754.592.193.894.0
F1 (%)50.791.192.897.050.791.393.095.946.691.394.995.1

GFM-NetPrecision (%)79.194.598.299.280.695.899.098.980.995.097.997.9
Recall (%)56.498.397.098.463.198.497.198.940.198.696.898.4
F1 (%)65.996.497.698.870.897.098.198.953.696.897.398.1