Research Article
Hybrid Deep-Learning Framework Based on Gaussian Fusion of Multiple Spatiotemporal Networks for Walking Gait Phase Recognition
Table 2
Summary of classification performance for different training functions.
| | Speed (m/s) | Training function | Classification result | | Accuracy (%) | Macro-F1 (%) | Macro-AUC |
| | 0.78 | Bagging | 90.5 | 67.7 | 0.97 | | AdaBoosting | 93.1 | 82.9 | 0.92 | | CNN + LSTM | 95.2 | 87.8 | 0.98 | | CNN + GRU | 94.7 | 87.3 | 0.97 | | CNN + RNN | 93.6 | 86.6 | 0.95 | | GFM-Net | 97.0 | 89.7 | 0.99 |
| | 1.0 | Bagging | 91.4 | 68.7 | 0.95 | | AdaBoosting | 92.4 | 82.7 | 0.91 | | CNN + LSTM | 97.2 | 90.6 | 0.99 | | CNN + GRU | 96.6 | 89.3 | 0.98 | | CNN + RNN | 95.6 | 88.5 | 0.97 | | GFM-Net | 97.5 | 91.2 | 0.99 |
| | 1.25 | Bagging | 89.2 | 66.3 | 0.95 | | AdaBoosting | 92.3 | 82.0 | 0.92 | | CNN + LSTM | 95.7 | 85.2 | 0.99 | | CNN + GRU | 95.3 | 84.6 | 0.99 | | CNN + RNN | 94.2 | 83.2 | 0.98 | | GFM-Net | 96.7 | 86.5 | 1.0 |
|
|