Research Article

Hybrid Deep-Learning Framework Based on Gaussian Fusion of Multiple Spatiotemporal Networks for Walking Gait Phase Recognition

Table 2

Summary of classification performance for different training functions.

Speed (m/s)Training functionClassification result
Accuracy (%)Macro-F1 (%)Macro-AUC

0.78Bagging90.567.70.97
AdaBoosting93.182.90.92
CNN + LSTM95.287.80.98
CNN + GRU94.787.30.97
CNN + RNN93.686.60.95
GFM-Net97.089.70.99

1.0Bagging91.468.70.95
AdaBoosting92.482.70.91
CNN + LSTM97.290.60.99
CNN + GRU96.689.30.98
CNN + RNN95.688.50.97
GFM-Net97.591.20.99

1.25Bagging89.266.30.95
AdaBoosting92.382.00.92
CNN + LSTM95.785.20.99
CNN + GRU95.384.60.99
CNN + RNN94.283.20.98
GFM-Net96.786.51.0