Research Article
Deep Learning-Based Efficient Model Development for Phishing Detection Using Random Forest and BLSTM Classifiers
Table 4
Performance results of the proposed model.
| | Accuracy (%) | f1 score (%) | Precision (%) | True positive rate (%) | True negative rate (%) | False positive rate (%) | False negative rate (%) |
| | 95.47 | 95.67 | 95.60 | 95.37 | 95.54 | 4.46 | 4.63 |
|
|