Research Article
Evaluation and Prediction of Wind Power Utilization Efficiency Based on Super-SBM and LSTM Models: A Case Study of 30 Provinces in China
Table 2
Wind power utilization efficiency of 30 provinces (2013–2019).
| | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Means | Rank |
| Inner Mongolia | 1.0628 | 1.2276 | 1.2068 | 1.1676 | 1.1657 | 1.1781 | 1.1495 | 1.1654 | 1 | Shandong | 1.2082 | 1.0733 | 1.1188 | 1.1410 | 1.1325 | 1.0299 | 1.0732 | 1.1110 | 2 | Fujian | 1.0884 | 1.0727 | 1.1190 | 1.0634 | 1.0841 | 0.5190 | 1.0278 | 0.9963 | 3 | Yunnan | 0.7269 | 1.0127 | 0.6789 | 1.0263 | 1.0574 | 1.0742 | 1.0832 | 0.9514 | 4 | Jiangsu | 0.6681 | 1.1232 | 1.1002 | 0.7318 | 1.0218 | 0.8032 | 1.1398 | 0.9412 | 5 | Hebei | 0.8524 | 0.6288 | 0.8145 | 1.0081 | 1.0134 | 0.9166 | 0.8716 | 0.8722 | 6 | Ningxia | 1.0054 | 0.8879 | 0.6067 | 0.6897 | 0.7854 | 0.7968 | 0.7006 | 0.7818 | 7 | Shanxi | 0.4841 | 1.0415 | 0.7174 | 0.7072 | 0.7667 | 0.9060 | 0.8377 | 0.7801 | 8 | Liaoning | 1.0061 | 0.7838 | 0.8231 | 0.7417 | 0.7113 | 0.6463 | 0.7461 | 0.7798 | 9 | Guangdong | 0.5420 | 0.6861 | 0.8391 | 0.6816 | 0.6892 | 0.4511 | 0.5724 | 0.6373 | 10 | Xinjiang | 0.5950 | 0.5409 | 0.4256 | 0.5693 | 0.6437 | 0.6182 | 0.6900 | 0.5833 | 11 | Heilongjiang | 0.6598 | 0.4868 | 0.4851 | 0.5698 | 0.5684 | 0.5691 | 0.5975 | 0.5624 | 12 | Gansu | 0.7467 | 0.5150 | 0.4642 | 0.4437 | 0.4894 | 0.5412 | 0.6040 | 0.5435 | 13 | Anhui | 0.3873 | 0.4490 | 0.5410 | 0.5884 | 0.5775 | 0.4263 | 0.5003 | 0.4957 | 14 | Zhejiang | 0.4844 | 0.4590 | 0.4594 | 0.5163 | 0.4911 | 0.3840 | 0.5502 | 0.4778 | 15 | Hubei | 0.2334 | 0.4467 | 0.4749 | 0.4823 | 0.6119 | 0.4492 | 0.6394 | 0.4768 | 16 | Guizhou | 0.3159 | 0.3473 | 0.6077 | 0.5189 | 0.6315 | 0.4263 | 0.4895 | 0.4767 | 17 | Jilin | 0.5189 | 0.4227 | 0.4033 | 0.4121 | 0.4604 | 0.5293 | 0.5141 | 0.4659 | 18 | Hunan | 0.2937 | 0.2988 | 0.5005 | 0.5304 | 0.6254 | 0.4121 | 0.4152 | 0.4395 | 19 | Shanghai | 0.4333 | 0.4224 | 0.3749 | 0.4670 | 0.4962 | 0.4115 | 0.4561 | 0.4373 | 20 | Guangxi | 0.2673 | 0.3377 | 0.2933 | 0.4434 | 0.4323 | 0.3967 | 0.7190 | 0.4128 | 21 | Jiangxi | 0.3308 | 0.3294 | 0.3877 | 0.4344 | 0.5058 | 0.3795 | 0.5206 | 0.4126 | 22 | Sichuan | 0.1527 | 0.2372 | 0.3147 | 0.4191 | 0.4682 | 0.4525 | 0.7987 | 0.4062 | 23 | Shaanxi | 0.3120 | 0.4150 | 0.4834 | 0.3091 | 0.4501 | 0.4260 | 0.4410 | 0.4052 | 24 | Henan | 0.3203 | 0.3499 | 0.3702 | 0.4287 | 0.3968 | 0.3482 | 0.5386 | 0.3932 | 25 | Tianjin | 0.3923 | 0.3778 | 0.3643 | 0.3983 | 0.3545 | 0.2468 | 0.3726 | 0.3581 | 26 | Hainan | 0.3994 | 0.3395 | 0.3673 | 0.3855 | 0.3409 | 0.2310 | 0.3186 | 0.3403 | 27 | Beijing | 0.3536 | 0.3410 | 0.3331 | 0.2900 | 0.2583 | 0.2387 | 0.2771 | 0.2988 | 28 | Qinghai | 0.1130 | 0.2805 | 0.3120 | 0.3437 | 0.3064 | 0.3207 | 0.3646 | 0.2916 | 29 | Chongqing | 0.1680 | 0.3103 | 0.2262 | 0.3541 | 0.3674 | 0.2544 | 0.3524 | 0.2904 | 30 | China | 0.5374 | 0.5748 | 0.5738 | 0.5954 | 0.6301 | 0.5461 | 0.6454 | 0.5861 | |
|
|