Research Article
Fake News Detection Using Machine Learning Ensemble Methods
Table 5
F1-score on the 4 datasets.
| | ā | DS1 | DS2 | DS3 | DS4 |
| | Logistic regression (LR) | 0.98 | 0.91 | 0.92 | 0.87 | | Linear SVM (LSVM) | 0.98 | 0.32 | 0.7 | 0.87 | | Multilayer perceptron | 0.98 | 0.34 | 0.95 | 0.9 | | K-nearest neighbors (KNN) | 0.89 | 0.23 | 0.83 | 0.77 |
| | Ensemble learners | | Random forest (RF) | 0.99 | 0.32 | 0.95 | 0.91 | | Voting classifier (RF, LR, KNN) | 0.97 | 0.88 | 0.94 | 0.88 | | Voting classifier (LR, LSVM, CART) | 0.96 | 0.86 | 0.92 | 0.86 | | Bagging classifier (decision trees) | 0.98 | 0.94 | 0.94 | 0.9 | | Boosting classifier (AdaBoost) | 0.98 | 0.92 | 0.92 | 0.86 | | Boosting classifier (XGBoost) | 0.99 | 0.94 | 0.95 | 0.9 |
| | Benchmark algorithms | | Perez-LSVM | 0.99 | 0.8 | 0.96 | 0.9 | | Wang-CNN | 0.87 | 0.67 | 0.31 | 0.73 | | Wang-Bi-LSTM | 0.84 | 0.44 | 0.35 | 0.57 |
|
|