Research Article

Semiparametric Deep Learning Manipulator Inverse Dynamics Modeling Method for Smart City and Industrial Applications

Table 2

Prediction results of RBD, NDL, and SDL models.

 Axis 1Axis 2Axis 3Axis 4Axis 5Axis 6All axes

Cross 1RBD2.28992.34172.36830.65230.58890.52901.7024
NDL2.61072.77151.82270.34180.44870.45771.7486
SDL1.83101.94601.35040.34500.42200.45241.2560

Cross 2RBD2.33162.31622.28930.66420.64980.55251.6937
NDL2.33422.54392.54280.38640.51620.47221.7807
SDL1.67211.84921.45280.34350.46330.46541.2162

Cross 3RBD2.48612.67232.21260.64170.59240.35821.7846
NDL2.24772.48201.16890.40810.44870.39771.4779
SDL1.40311.55330.96560.32940.40220.34280.9748

Cross 4RBD2.73252.73232.51190.66250.63860.37081.9246
NDL2.32392.17141.63740.37450.42450.42801.4889
SDL1.40091.68161.16130.34350.43990.36961.0478

Cross 5RBD2.80112.79462.27410.63260.57950.36201.9015
NDL1.67682.29891.66900.43460.38930.33931.3746
SDL1.53261.68471.00040.33850.37750.30581.0439

Cross averageRBD2.52822.57142.33130.65060.60980.43451.8014
NDL2.23872.45351.76820.38910.44550.41901.5741
SDL1.56791.74301.18610.34000.42100.38721.1077