Research Article

Identification of Wiener Model with Internal Noise Using a Cubic Spline Approximation-Bayesian Composite Quantile Regression Algorithm

Table 1

Comparison among CSA-BCQR, CSA-BQR, and CSA-RLS in the numerical simulation.

VariableCSA-BCQRCSA-BQRCSA-RLS

Linear block−1.001−1.01−0.996
2.992.952.93
−2.0−2.07−2.11
ARE2.69E032.31E  − 023.49E − 02

Nonlinear blockMSE3.121E045.675E − 049.554E − 04

Comprehensive errorCE2.958.0612.98