Journals
Publish with us
Publishing partnerships
About us
Blog
Complexity
Journal overview
For authors
For reviewers
For editors
Table of Contents
Special Issues
Complexity
/
2020
/
Article
/
Tab 1
/
Research Article
Identification of Wiener Model with Internal Noise Using a Cubic Spline Approximation-Bayesian Composite Quantile Regression Algorithm
Table 1
Comparison among CSA-BCQR, CSA-BQR, and CSA-RLS in the numerical simulation.
Variable
CSA-BCQR
CSA-BQR
CSA-RLS
Linear block
−1.001
−1.01
−0.996
2.99
2.95
2.93
−2.0
−2.07
−2.11
ARE
2.69E
−
03
2.31
E
− 02
3.49
E
− 02
Nonlinear block
MSE
3.121E
−
04
5.675
E
− 04
9.554
E
− 04
Comprehensive error
CE
2.95
8.06
12.98