Research Article

Identification of Wiener Model with Internal Noise Using a Cubic Spline Approximation-Bayesian Composite Quantile Regression Algorithm

Table 2

Comparison among CSA-BCQR, CSA-BQR, and CSA-RLS in the water tank.

Algorithm

True value 0.80.40.20.1 

CSA-BCQR10.95430.55440.36450.24590.3360
500.89530.49290.32080.19120.2186
1000.85890.47460.26780.15890.1418
1500.81610.40980.20870.11570.0282
2000.80070.40140.20570.10090.0065

CSA-BQR10.97350.59680.38670.26440.3922
500.91680.51150.33420.23190.2689
1000.87940.48960.27940.20460.1927
1500.82480.46870.23010.16870.1136
2000.80910.42840.21260.11660.0395

CSA-RLS10.98590.58880.39110.27210.4005
500.92770.54720.35580.25260.3172
1000.90240.50780.29420.23110.2380
1500.85850.49950.24890.18480.1642
2000.81590.42320.21510.12050.0411