Research Article
Identification of Wiener Model with Internal Noise Using a Cubic Spline Approximation-Bayesian Composite Quantile Regression Algorithm
Table 2
Comparison among CSA-BCQR, CSA-BQR, and CSA-RLS in the water tank.
| Algorithm | | | | | | |
| True value | ā | 0.8 | 0.4 | 0.2 | 0.1 | ā |
| CSA-BCQR | 1 | 0.9543 | 0.5544 | 0.3645 | 0.2459 | 0.3360 | 50 | 0.8953 | 0.4929 | 0.3208 | 0.1912 | 0.2186 | 100 | 0.8589 | 0.4746 | 0.2678 | 0.1589 | 0.1418 | 150 | 0.8161 | 0.4098 | 0.2087 | 0.1157 | 0.0282 | 200 | 0.8007 | 0.4014 | 0.2057 | 0.1009 | 0.0065 |
| CSA-BQR | 1 | 0.9735 | 0.5968 | 0.3867 | 0.2644 | 0.3922 | 50 | 0.9168 | 0.5115 | 0.3342 | 0.2319 | 0.2689 | 100 | 0.8794 | 0.4896 | 0.2794 | 0.2046 | 0.1927 | 150 | 0.8248 | 0.4687 | 0.2301 | 0.1687 | 0.1136 | 200 | 0.8091 | 0.4284 | 0.2126 | 0.1166 | 0.0395 |
| CSA-RLS | 1 | 0.9859 | 0.5888 | 0.3911 | 0.2721 | 0.4005 | 50 | 0.9277 | 0.5472 | 0.3558 | 0.2526 | 0.3172 | 100 | 0.9024 | 0.5078 | 0.2942 | 0.2311 | 0.2380 | 150 | 0.8585 | 0.4995 | 0.2489 | 0.1848 | 0.1642 | 200 | 0.8159 | 0.4232 | 0.2151 | 0.1205 | 0.0411 |
|
|