Research Article
Deep Ensemble Learning for Human Action Recognition in Still Images
Table 1
Results for NCNN in Li’s action dataset.
| | Algorithm | Sensitivity for each class | Overall | | Phoning | P.Guitar | R.Bike | R.Horse | Running | Shooting | Acc | Loss |
| | SURF | 0.45 | 0.1 | 0.2 | 0.2 | 0.05 | 0.2 | 0.2 | NA | | BOF | 0.8 | 0.6 | 0.75 | 0.75 | 0.6 | 0.9 | 0.7333 | NA | | PBOF | 0.95 | 0.75 | 0.8 | 0.8 | 0.75 | 0.95 | 0.8333 | NA | | GIST | 0.70 | 0.75 | 0.65 | 0.85 | 0.70 | 0.70 | 0.725 | NA | | RF | 0.70 | 0.75 | 0.55 | 0.75 | 0.85 | 0.70 | 0.7167 | NA | | GBM | 0.55 | 0.55 | 0.75 | 0.70 | 0.65 | 0.60 | 0.6333 | NA | | Voting | 0.85 | 0.75 | 0.80 | 0.85 | 0.75 | 0.70 | 0.7833 | NA |
| | VGG16 | 1 | 0.95 | 0.9 | 1 | 1 | 0.85 | 0.95 | 0.1564 | | VGG16_NCNN | 1 | 0.9 | 0.95 | 1 | 1 | 0.85 | 0.95 | 0.1739 | | VGG19 | 0.95 | 0.95 | 0.9 | 1 | 0.8 | 0.85 | 0.9083 | 0.2442 | | VGG19_NCNN | 1 | 0.95 | 1 | 1 | 0.8 | 0.95 | 0.95 | 0.16 | | ResNet50 | 0.9 | 1 | 0.8 | 0.9 | 1 | 0.95 | 0.925 | 0.2253 | | ResNet50_NCNN | 0.95 | 1 | 0.9 | 1 | 1 | 0.95 | 0.9667 | 0.0703 |
|
|