Research Article
Deep Ensemble Learning for Human Action Recognition in Still Images
Table 2
Results for NCNN in the Willow action dataset.
| Algorithm | Sensitivity for each class | Overall | Inter.W.C. | Photog. | P.Music | R.Bike | R.Horse | Running | Walking | Acc | Loss |
| SURF | 0.03 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.1908 | NA | BOF | 0.55 | 0.43 | 0.42 | 0.48 | 0.40 | 0.26 | 0.13 | 0.3735 | NA | PBOF | 0.48 | 0.47 | 0.38 | 0.43 | 0.4 | 0.36 | 0.21 | 0.3795 | NA | GIST | 0.55 | 0.23 | 0.41 | 0.39 | 0.28 | 0.28 | 0.32 | 0.3434 | NA | RF | 0.28 | 0.39 | 0.35 | 0.44 | 0.36 | 0.28 | 0.07 | 0.3153 | NA | GBM | 0.45 | 0.28 | 0.33 | 0.41 | 0.26 | 0.40 | 0.17 | 0.3193 | NA | Voting | 0.52 | 0.33 | 0.39 | 0.38 | 0.30 | 0.31 | 0.21 | 0.3394 | NA |
| VGG16 | 0.76 | 0.69 | 0.71 | 0.94 | 0.84 | 0.6 | 0.07 | 0.6486 | 1.1642 | VGG16_NCNN | 0.79 | 0.52 | 0.68 | 0.92 | 0.9 | 0.66 | 0.3 | 0.6647 | 1.0545 | VGG19 | 0.9 | 0.41 | 0.83 | 0.93 | 0.86 | 0.47 | 0.32 | 0.6647 | 1.0172 | VGG19_NCNN | 0.83 | 0.51 | 0.72 | 0.86 | 0.88 | 0.67 | 0.23 | 0.6506 | 0.9145 | ResNet50 | 0.93 | 0.39 | 0.7 | 0.89 | 0.78 | 0.41 | 0.51 | 0.6466 | 0.9598 | ResNet50_NCNN | 0.79 | 0.24 | 0.75 | 0.92 | 0.82 | 0.48 | 0.55 | 0.6506 | 0.9019 |
|
|