Research Article
Deep Ensemble Learning for Human Action Recognition in Still Images
Table 3
Results for NCNN in the 1.5x cropped Willow action dataset.
| Algorithm | Sensitivity for each class | Overall | Inter.W.C. | Photog. | P.Music | R.Bike | R.Horse | Running | Walking | Acc | Loss |
| SURF | 0.03 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.1406 | NA | BOF | 0.46 | 0.32 | 0.44 | 0.44 | 0.46 | 0.40 | 0.44 | 0.4234 | NA | PBOF | 0.49 | 0.34 | 0.47 | 0.48 | 0.58 | 0.47 | 0.33 | 0.4392 | NA | GIST | 0.59 | 0.36 | 0.31 | 0.45 | 0.49 | 0.43 | 0.30 | 0.3934 | NA | RF | 0.59 | 0.32 | 0.27 | 0.45 | 0.39 | 0.35 | 0.30 | 0.3618 | NA | GBM | 0.46 | 0.36 | 0.30 | 0.32 | 0.39 | 0.37 | 0.25 | 0.3270 | NA | Voting | 0.69 | 0.38 | 0.32 | 0.42 | 0.46 | 0.31 | 0.30 | 0.3791 | NA |
| VGG16 | 0.62 | 0.19 | 0.73 | 0.88 | 0.46 | 0.59 | 0.41 | 0.5877 | 1.2222 | VGG16_NCNN | 0.74 | 0.53 | 0.76 | 0.82 | 0.6 | 0.56 | 0.33 | 0.6209 | 1.1855 | VGG19 | 0.72 | 0.36 | 0.7 | 0.81 | 0.67 | 0.7 | 0.38 | 0.6209 | 1.1917 | VGG19_NCNN | 0.69 | 0.31 | 0.79 | 0.82 | 0.75 | 0.64 | 0.36 | 0.6272 | 1.0313 | ResNet50 | 0.87 | 0.22 | 0.52 | 0.81 | 0.95 | 0.48 | 0.5 | 0.5987 | 1.1399 | ResNet50_NCNN | 0.85 | 0.16 | 0.67 | 0.87 | 0.77 | 0.23 | 0.74 | 0.6288 | 0.9666 |
|
|