Research Article
Deep Ensemble Learning for Human Action Recognition in Still Images
Table 9
Results for DELVS in the 1.5x cropped Willow action dataset.
| Model | Strategy | Sensitivity for each class | Overall | Inter.W.C. | Photog. | P.Music | R.Bike | R.Horse | Running | Walking | Acc |
| DELVS1 | Hard | 0.87 | 0.35 | 0.69 | 0.84 | 0.77 | 0.62 | 0.39 | 0.6351 | Soft | 0.82 | 0.27 | 0.72 | 0.86 | 0.75 | 0.65 | 0.43 | 0.6414 | Tuning | 0.82 | 0.3 | 0.73 | 0.86 | 0.74 | 0.68 | 0.43 | 0.6461 |
| DELVS2 | Hard | 0.82 | 0.45 | 0.77 | 0.84 | 0.75 | 0.51 | 0.43 | 0.6509 | Soft | 0.82 | 0.40 | 0.79 | 0.84 | 0.79 | 0.54 | 0.47 | 0.6619 | Tuning | 0.85 | 0.29 | 0.76 | 0.86 | 0.86 | 0.51 | 0.61 | 0.6777 |
| DELVS3 | Hard | 0.85 | 0.4 | 0.74 | 0.85 | 0.81 | 0.58 | 0.4 | 0.6493 | Soft | 0.85 | 0.34 | 0.76 | 0.84 | 0.81 | 0.58 | 0.46 | 0.6556 | Tuning | 0.85 | 0.4 | 0.79 | 0.84 | 0.79 | 0.59 | 0.49 | 0.6746 |
|
|