Research Article

Decomposition-Based Multiobjective Evolutionary Optimization with Adaptive Multiple Gaussian Process Models

Table 7

Performance comparison of MOEA/D-AMG with different values of K in terms of the average IGD values and standard deviations on F, UF, and WFG problems.

ProblemsK = 3K = 5K = 7K = 10

F11.36E − 03 (1.25E − 05)1.35E − 03 (1.28E − 05)1.34E − 03 (6.96E − 06)1.33E − 03 (1.01E − 05)
F23.29E − 03 (3.50E − 04)2.85E − 03 (2.95E − 04)3.48E − 03 (1.36E − 03)3.25E − 03 (7.55E − 04)
F33.09E − 03 (2.70E − 04)2.55E − 03 (3.59E − 04)3.29E − 03 (7.85E − 04)3.57E − 03 (1.02E − 03)
F43.18E − 03 (7.57E − 04)2.93E − 03 (7.23E − 04)3.61E − 03 (1.48E − 03)3.15E − 03 (1.21E − 03)
F59.42E − 03 (1.56E − 03)7.94E − 03 (1.27E − 03)7.40E − 03 (7.13E − 04)7.82E − 03 (1.37E − 03)
F66.14E − 02 (7.57E − 03)6.54E − 02 (8.13E − 03)5.99E − 02 (8.70E − 03)6.36E − 02 (7.34E − 03)
F76.71E − 03 (7.04E − 03)4.21E − 02 (7.84E − 02)4.41E − 02 (6.07E − 02)9.36E − 02 (1.21E − 01)
F87.89E − 03 (5.53E − 03)1.55E − 02 (1.07E − 02)1.28E − 02 (1.44E − 02)2.14E − 02 (2.46E − 02)
F95.77E − 03 (1.84E − 03)5.14E − 03 (2.12E − 03)5.54E − 03 (2.23E − 03)5.01E − 03 (2.07E − 03)
UF13.06E − 03 (1.24E − 03)2.45E − 03 (1.42E − 03)2.12E − 03 (3.92E − 04)2.15E − 03 (6.25E − 04)
UF27.08E − 03 (1.27E − 03)6.68E − 03 (8.37E − 04)6.73E − 03 (5.91E − 04)8.19E − 03 (3.03E − 03)
UF31.01E − 02 (5.71E − 03)1.74E − 02 (1.99E − 02)1.51E − 02 (2.47E − 02)1.30E − 02 (1.14E − 02)
UF46.92E − 02 (6.78E − 03)6.98E − 02 (5.78E − 03)7.41E − 02 (5.73E − 03)7.38E − 02 (4.95E − 03)
UF53.70E − 01 (7.27E − 02)4.08E − 01 (9.50E − 02)3.59E − 01 (6.42E − 02)3.12E − 01 (4.57E − 02)
UF61.71E − 01 (2.32E − 01)1.62E − 01 (2.06E − 01)1.13E − 01 (5.06E − 02)2.34E − 01 (2.70E − 01)
UF75.02E − 02 (1.41E − 01)5.13E − 03 (6.70E − 04)5.33E − 03 (4.75E − 04)5.26E − 03 (7.49E − 04)
UF85.84E − 02 (6.25E − 03)5.74E − 02 (8.29E − 03)5.96E − 02 (1.13E − 02)5.59E − 02 (9.79E − 03
UF93.29E − 02 (1.39E − 02)2.76E − 02 (4.37E − 03)3.07E − 02 (8.23E − 03)3.38E − 02 (1.40E − 02)
UF101.45E + 00 (2.84E − 01)8.03E − 01 (1.71E − 01)7.24E − 01 (9.71E − 02)6.10E − 01 (7.81E − 02)
WFG11.16E + 00 (7.93E − 03)1.11E + 00 (1.17E − 02)1.14E + 00 (5.25E − 03)1.12E + 00 (7.77E − 03)
WFG21.58E − 02 (4.26E − 04)1.55E − 02 (3.24E − 04)1.56E − 02 (3.13E − 04)1.56E − 02 (3.37E − 04)
WFG35.07E − 03 (1.82E − 04)4.45E − 03 (1.42E − 04)4.74E − 03 (1.80E − 04)4.79E − 03 (1.68E − 04)
WFG45.73E − 02 (2.02E − 03)4.81E − 02 (1.64E − 03)5.45E − 02 (1.64E − 03)5.20E − 02 (2.15E − 03)
WFG56.55E − 02 (4.28E − 04)6.52E − 02 (4.14E − 04)6.53E − 02 (1.44E − 04)6.53E − 02 (3.18E − 04)
WFG61.18E − 01 (1.18E − 01)1.62E − 02 (5.02E − 02)5.11E − 02 (8.14E − 02)5.55E − 02 (9.32E − 02)
WFG75.92E − 03 (1.56E − 04)5.53E − 03 (2.13E − 05)5.70E − 03 (6.29E − 05)5.63E − 03 (4.28E − 05)
WFG85.88E − 02 (9.04E − 04)5.77E − 02 (1.60E − 03)5.81E − 02 (1.59E − 03)6.08E − 02 (1.35E − 03)
WFG91.66E − 02 (4.21E − 04)1.52E − 02 (2.92E − 04)1.61E − 02 (6.51E − 04)1.57E − 02 (4.72E − 04)
Best31663

The better average values of these algorithms for each instance are given in bold and italics.