Application of Multiattention Mechanism in Power System Branch Parameter Identification
Table 2
Experimental results of grid dataset on index branch conductance .
Branch conductance
None
50 dB
30 dB
dropData
dropEdge
50 dB + DD + DE
LinearRegression
0.0052
0.0134
0.1019
0.2138
0.2922
0.3481
SVR
0.0985
0.1097
0.1583
0.0885
0.3196
0.3110
RF
0.0710
0.0714
0.1258
0.0769
0.3232
0.3192
XGboost
0.0754
0.0983
0.1642
0.1013
0.1257
0.1343
lightGBM
0.1043
0.1342
0.1871
0.1222
0.1465
0.1543
KNN
0.0951
0.1011
0.1498
0.1228
0.1028
0.1435
Bagging
0.0772
0.0992
0.1345
0.1173
0.1274
0.1371
FCN
0.0706
0.0777
0.2494
0.0723
0.0751
0.0751
GTN
0.0672
0.0682
0.0680
0.0678
0.0680
0.0681
The order of RMSE index used by branch conductance is . Here, we choose RMSE as the comparative index. The highest values for the different metrics are highlighted in bold.