Research Article

Application of Soft Computing Paradigm to Large Deformation Analysis of Cantilever Beam under Point Load

Table 3

Maximum and minimum absolute errors obtained in ANN-GNDO-SQP solutions for different cases of large deflection of cantilever beam.

Maximum AEMinimum AEMaximum AEMinimum AEMaximum AEMinimum AEMaximum AEMinimum AE

0.01.07E 082.16E 102.54E 089.14E 111.28E 071.30E 101.24E 072.18E 09
0.11.03E 081.67E 102.18E 081.36E 101.06E 076.97E 101.46E 071.48E 09
0.21.02E 081.82E 102.46E 083.53E 111.27E 079.89E 121.41E 071.72E 09
0.32.23E 106.59E 121.20E 095.38E 127.64E−094.03E−102.14E 098.42E 11
0.44.76E 097.30E 118.77E 095.44E 114.32E−083.40E−108.23E 086.09E 10
0.59.86E 091.73E 102.25E 088.30E 111.20E−071.10E−111.75E−071.58E−09
0.63.79E 098.09E 111.11E 084.73E 116.36E−085.62E−107.28E−088.51E−10
0.75.26E 102.83E 123.14E 105.72E 131.06E−094.32E−108.63E 091.50E 12
0.81.02E 081.53E 102.09E 081.46E 101.14E−079.45E−112.06E 071.08E 09
0.98.53E 091.56E 102.22E 082.44E 101.28E−071.35E−091.93E 071.22E 09
1.01.04E 081.51E 102.07E 082.99E 101.20E−074.76E−102.30E 071.24E 09