Research Article

Application of Soft Computing Paradigm to Large Deformation Analysis of Cantilever Beam under Point Load

Table 7

Unknown parameters in ANN model for finding best solution for each case of large deflected beam with cantilever beam under end-point load using ANN-GNDO-SQP algorithm.

Case ICase IICase IIICase IV

1−2.9962626−0.65813310−1.99493901.48586354−0.70445892.44833643−2.0618838−0.28377402.30806094−6.065738600.86825787−2.33438240
2−2.83130120.59715086−2.4652621−2.29465530−0.9937027−1.486082601.43265121.29096300.41306818−8.68057533−0.61741762−1.96299418
3−2.83130100.59715056−2.46526352.40794827−1.12098203.41884685−5.1431940−0.9214788−2.53963320−6.065752580.86882569−2.33421836
40.24243930.816247880.9989734−2.29465550−0.9937063−1.48608340−5.1431899−0.9214561−2.53962473−8.68058082−0.61739784−1.96303574
5−2.9962567−0.65820220−1.9949300−2.29465580−0.9937174−1.486078000.98919610.50958473.055289861.88766152−1.936926885.66526002
60.69598220.587879921.7968609−2.29465660−0.9937021−1.486083500.98837070.51644013.07199558−8.68057978−0.61743654−1.96298424
70.6315080−0.390808802.19602902.40797982−1.12063913.41897235−5.1431949−0.9214901−2.53962702−8.68057609−0.61744398−1.96300933
81.20451780.65966357−0.7020318−1.149150001.55185671.25665993−8.44680521.1202166−3.246547502.29100504−0.701513234.57057840
9−2.83129660.59714525−2.4652530−3.734718700.28620611.440033080.98838130.51647153.072024762.29100362−0.701524264.57058216
10−2.9962649−0.65808110−1.9949521−2.29465600−0.9936976−1.48608900−5.1431979−0.9214801−2.53963468−8.68057385−0.61743850−1.96300282