Research Article
Design of Multiple Dependent State Sampling Plan Application for COVID-19 Data Using Exponentiated Weibull Distribution
Table 2
Optimal parameters of the proposed MDSSP for EWD with
at 50
th percentile.
| | | a = 0.5 | a = 0.7 | a = 1.0 | n | | | m | | n | | | m | | n | | | m | |
| 0.25 | 2 | 21 | 1 | 11 | 4 | 0.9839 | 10 | 1 | 4 | 2 | 0.9854 | 5 | 1 | 2 | 1 | 0.9720 | 4 | 11 | 0 | 10 | 3 | 0.9973 | 5 | 0 | 2 | 2 | 0.9974 | 3 | 0 | 2 | 1 | 0.9964 | 6 | 11 | 0 | 10 | 3 | 0.9997 | 5 | 0 | 2 | 2 | 0.9997 | 3 | 0 | 2 | 1 | 0.9996 | 8 | 11 | 0 | 10 | 3 | 1.0000 | 5 | 0 | 2 | 2 | 1.0000 | 3 | 0 | 2 | 1 | 0.9999 | 10 | 11 | 0 | 10 | 3 | 1.0000 | 5 | 0 | 2 | 2 | 1.0000 | 3 | 0 | 2 | 1 | 1.0000 |
| 0.10 | 2 | 30 | 1 | 11 | 3 | 0.9600 | 14 | 1 | 2 | 1 | 0.9501 | 7 | 1 | 3 | 1 | 0.9503 | 4 | 18 | 0 | 10 | 2 | 0.9953 | 8 | 0 | 7 | 2 | 0.9936 | 4 | 0 | 1 | 1 | 0.9916 | 6 | 18 | 0 | 10 | 2 | 0.9995 | 8 | 0 | 7 | 2 | 0.9994 | 4 | 0 | 1 | 1 | 0.9991 | 8 | 18 | 0 | 10 | 2 | 0.9999 | 8 | 0 | 7 | 2 | 0.9999 | 4 | 0 | 1 | 1 | 0.9998 | 10 | 18 | 0 | 10 | 2 | 1.0000 | 8 | 0 | 7 | 2 | 1.0000 | 4 | 0 | 1 | 1 | 1.0000 |
| 0.05 | 2 | 39 | 1 | 3 | 1 | 0.9588 | 22 | 2 | 12 | 2 | 0.9822 | 11 | 2 | 5 | 1 | 0.9775 | 4 | 23 | 0 | 10 | 2 | 0.9925 | 10 | 0 | 9 | 2 | 0.9901 | 5 | 0 | 2 | 1 | 0.9905 | 6 | 23 | 0 | 10 | 2 | 0.9993 | 10 | 0 | 9 | 2 | 0.9990 | 5 | 0 | 2 | 1 | 0.9990 | 8 | 23 | 0 | 10 | 2 | 0.9999 | 10 | 0 | 9 | 2 | 0.9998 | 5 | 0 | 2 | 1 | 0.9998 | 10 | 23 | 0 | 10 | 2 | 1.0000 | 10 | 0 | 9 | 2 | 0.9999 | 5 | 0 | 2 | 1 | 0.9999 |
| 0.01 | 2 | 65 | 2 | 12 | 2 | 0.9610 | 29 | 2 | 4 | 1 | 0.9568 | 17 | 3 | 8 | 1 | 0.9771 | 4 | 35 | 0 | 10 | 2 | 0.9835 | 16 | 0 | 2 | 1 | 0.9873 | 7 | 0 | 2 | 1 | 0.9820 | 6 | 35 | 0 | 10 | 2 | 0.9983 | 16 | 0 | 2 | 1 | 0.9987 | 7 | 0 | 2 | 1 | 0.9980 | 8 | 35 | 0 | 10 | 2 | 0.9997 | 16 | 0 | 2 | 1 | 0.9998 | 7 | 0 | 2 | 1 | 0.9996 | 10 | 35 | 0 | 10 | 2 | 0.9999 | 16 | 0 | 2 | 1 | 0.9999 | 7 | 0 | 2 | 1 | 0.9999 |
|
|