Research Article
Design of Multiple Dependent State Sampling Plan Application for COVID-19 Data Using Exponentiated Weibull Distribution
Table 5
Optimal parameters of the proposed MDSSP for EWD with
at 25
th percentile.
| | | a = 0.5 | a = 0.7 | a = 1.0 | n | | | m | | n | | | m | | n | | | m | |
| 0.25 | 2 | 45 | 0 | 2 | 1 | 0.9500 | 26 | 1 | 11 | 3 | 0.9912 | 10 | 1 | 2 | 3 | 0.9842 | 4 | 34 | 0 | 1 | 3 | 0.9981 | 13 | 0 | 1 | 3 | 0.9980 | 5 | 0 | 4 | 3 | 0.9979 | 6 | 34 | 0 | 1 | 3 | 0.9998 | 13 | 0 | 1 | 3 | 0.9998 | 5 | 0 | 4 | 3 | 0.9998 | 8 | 34 | 0 | 1 | 3 | 1.0000 | 13 | 0 | 1 | 3 | 1.0000 | 5 | 0 | 4 | 3 | 1.0000 | 10 | 34 | 0 | 1 | 3 | 1.0000 | 13 | 0 | 1 | 3 | 1.0000 | 5 | 0 | 4 | 3 | 1.0000 |
| 0.10 | 2 | 94 | 1 | 11 | 3 | 0.9756 | 37 | 1 | 4 | 2 | 0.9797 | 15 | 1 | 2 | 1 | 0.9658 | 4 | 56 | 0 | 1 | 2 | 0.9964 | 22 | 0 | 10 | 2 | 0.9997 | 9 | 0 | 1 | 1 | 0.9967 | 6 | 56 | 0 | 1 | 2 | 0.9997 | 22 | 0 | 10 | 2 | 0.9967 | 9 | 0 | 1 | 1 | 0.9997 | 8 | 56 | 0 | 1 | 2 | 0.9999 | 22 | 0 | 10 | 2 | 0.9999 | 9 | 0 | 1 | 1 | 0.9999 | 10 | 56 | 0 | 1 | 2 | 1.0000 | 22 | 0 | 10 | 2 | 1.0000 | 9 | 0 | 1 | 1 | 1.0000 |
| 0.05 | 2 | 115 | 1 | 5 | 2 | 0.9675 | 45 | 1 | 11 | 2 | 0.9626 | 18 | 1 | 3 | 1 | 0.9678 | 4 | 72 | 0 | 1 | 2 | 0.9942 | 28 | 0 | 4 | 2 | 0.9947 | 11 | 0 | 1 | 1 | 0.9950 | 6 | 72 | 0 | 1 | 2 | 0.9995 | 28 | 0 | 4 | 2 | 0.9995 | 11 | 0 | 1 | 1 | 0.9995 | 8 | 72 | 0 | 1 | 2 | 0.9999 | 28 | 0 | 4 | 2 | 0.9999 | 11 | 0 | 1 | 1 | 0.9999 | 10 | 72 | 0 | 1 | 2 | 1.0000 | 28 | 0 | 4 | 2 | 1.0000 | 11 | 0 | 1 | 1 | 1.0000 |
| 0.01 | 2 | 203 | 2 | 3 | 1 | 0.9659 | 79 | 2 | 3 | 1 | 0.9614 | 31 | 2 | 5 | 1 | 0.9813 | 4 | 111 | 0 | 10 | 2 | 0.9893 | 43 | 0 | 1 | 1 | 0.9909 | 17 | 0 | 2 | 1 | 0.9919 | 6 | 111 | 0 | 10 | 2 | 0.9990 | 43 | 0 | 1 | 1 | 0.9991 | 17 | 0 | 2 | 1 | 0.9992 | 8 | 111 | 0 | 10 | 2 | 0.9998 | 43 | 0 | 1 | 1 | 0.9998 | 17 | 0 | 2 | 1 | 0.9999 | 10 | 111 | 0 | 10 | 2 | 1.0000 | 43 | 0 | 1 | 1 | 1.0000 | 17 | 0 | 2 | 1 | 1.0000 |
|
|