Research Article
Online Semisupervised Learning Approach for Quality Monitoring of Complex Manufacturing Process
Table 4
t-test result on injection molding dataset.
| Scenario | Model 1 | Model 2 | T value | value |
| Sporadic access (current batch prediction) | ParsNet++ | ParsNet | 15.7305 | 2.66e−07 | ParsNet++ | NADINE | 13.6995 | 7.77e−07 | ParsNet++ | ODL | 40.1705 | 1.62e−10 | ParsNet++ | ResNet18 | 10.3871 | 6.39e−06 | ParsNet++ | VGG11 | 13.9605 | 6.72e−07 |
| Sporadic access (next batch prediction) | ParsNet++ | ParsNet | 16.7425 | 1.64e−07 | ParsNet++ | NADINE | 26.3042 | 4.69e−09 | ParsNet++ | ODL | 11.328168 | 3.32E−06 |
| Infinity delay (current batch prediction) | ParsNet++ | ParsNet | 33.8308 | 6.37e−10 | ParsNet++ | SCARGC-SVM | 44.5193 | 7.15e−11 | ParsNet++ | SCARGC-1NN | 32.4618 | 8.84e−10 |
| Infinity delay (next batch prediction) | ParsNet++ | ParsNet | 18.9618 | 6.19e−08 | ParsNet++ | SCARGC-SVM | 23.5353 | 1.13e−08 | ParsNet++ | SCARGC-1NN | 28.3756 | 2.57e−09 |
|
|