Research Article

Online Semisupervised Learning Approach for Quality Monitoring of Complex Manufacturing Process

Table 4

t-test result on injection molding dataset.

ScenarioModel 1Model 2T value value

Sporadic access (current batch prediction)ParsNet++ParsNet15.73052.66e−07
ParsNet++NADINE13.69957.77e−07
ParsNet++ODL40.17051.62e−10
ParsNet++ResNet1810.38716.39e−06
ParsNet++VGG1113.96056.72e−07

Sporadic access (next batch prediction)ParsNet++ParsNet16.74251.64e−07
ParsNet++NADINE26.30424.69e−09
ParsNet++ODL11.3281683.32E−06

Infinity delay (current batch prediction)ParsNet++ParsNet33.83086.37e−10
ParsNet++SCARGC-SVM44.51937.15e−11
ParsNet++SCARGC-1NN32.46188.84e−10

Infinity delay (next batch prediction)ParsNet++ParsNet18.96186.19e−08
ParsNet++SCARGC-SVM23.53531.13e−08
ParsNet++SCARGC-1NN28.37562.57e−09