Research Article

Industrial Agglomeration Analysis Based on Spatial Durbin Model: Evidence from Beijing-Tianjin-Hebei Economic Circle in China

Table 3

Empirical results of dynamic spatial Durbin model.

VariableGeographical distance weight matrixEconomic distance weight matrix

Yt−10.1250.143
(0.043)(0.045)
lnX10.6760.269
(0.127)(0.111)
lnX20.2750.113
(0.049)(0.053)
lnX1_lnX2−0.062−0.022
(−0.013)(−0.011)
Z1−0.736−0.634
(−0.301)(−0.335)
Z21.5260.537
(3.014)(2.667)
Z30.0980.065
(0.096)(0.148)
 × Yt−10.3530.313
(0.151)(0.145)
 × lnX11.307−0.141
(0.447)(−0.212)
 × lnX20.6040.055
(0.215)(0.072)
 × lnX1_lnX2−0.1740.127
(−0.059)(0.053)
 × Z1−2.546−0.044
(−1.085)(−0.396)
 × Z2−36.798−21.406
(−9.986)(−10.127)
 × Z32.3761.390
(0.408)(0.405)
Spatial rho0.872−0.592
(0.260)(−0.166)
N120120
Log-likelihood99.665388.3828
R20.8260.783

Note. , , , and indicate significant differences at 10%, 5%, and 1% test levels, respectively.