Research Article
Arabic Fake News Detection: Comparative Study of Neural Networks and Transformer-Based Approaches
Table 2
FND model performance on ArCOV19-Rumors, ANS, and AraNews datasets.
| Model \ measure | F1 | Precision | Recall | Accuracy |
| Linear and deep learning (ArCOV19-Rumors) | | | | | Linear (WL-W2V) | 0.827886 | 0.831215 | 0.836915 | 0.829752 | CNN (WL-F) | 0.782586 | 0.881676 | 0.70797 | 0.791736 | RNN (ChL-F) | 0.712743 | 0.555372 | 1 | 0.555372 | GRU (WL-W2V) | 0.838259 | 0.833348 | 0.846716 | 0.831405 | Transformers with gradual unfreezing, special learning rate, and learning rate scheduling (ArCOV19-Rumors) | | | | | AraBERT v1-original | 0.811362 | 0.819645 | 0.83294 | 0.825083 | AraBERT v02 | 0.669801 | 0.594531 | 0.835298 | 0.628713 | AraBERT v2 | 0.812187 | 0.846519 | 0.816502 | 0.825083 | ArAElectra | 0.936161 | 0.929813 | 0.95675 | 0.952145 | AraGPT2 | 0.908726 | 0.914789 | 0.927801 | 0.912541 | QARiB | 0.953345 | 0.956216 | 0.956404 | 0.975248 | ArBert | 0.891291 | 0.907135 | 0.90165 | 0.914191 | MarBert | 0.933561 | 0.950039 | 0.934968 | 0.940594 | Transformers with a constant learning rate of 1e-5 (ArCOV19-Rumors) | | | | | AraBERT v02 | 0.705171 | 0.722772 | 0.69802 | 0.945545 | AraGPT2 | 0.776255 | 0.774085 | 0.806601 | 0.813531 | ArBert | 0.953423 | 0.947729 | 0.966777 | 0.958746 | Transformers with special learning rate and learning rate scheduling (ArCOV19-Rumors) | | | | | AraBERT v02 | 0.928597 | 0.960616 | 0.911881 | 0.948845 | QARiB | 0.930478 | 0.941914 | 0.92557 | 0.952145 | AraGPT2 | 0.90882 | 0.919802 | 0.927927 | 0.925743 | Transformers with special learning rate and learning rate scheduling (ANS dataset) | | | | | AraBERT v02 | 0.02752 | 0.06181 | 0.018186 | 0.675497 | QARiB | 0.058888 | 0.10596 | 0.045412 | 0.688742 | AraGPT2 | 0.203931 | 0.278146 | 0.191023 | 0.642384 | Transformers with special learning rate and learning rate scheduling (AraNews dataset) | | | | | AraBERT v02 | 0.886098 | 0.800455 | 0.999121 | 0.800264 | QARiB | 0.887142 | 0.800422 | 0.999093 | 0.800264 | AraGPT2 | 0.659546 | 0.509349 | 1 | 0.509349 |
|
|