Research Article

Tourism Growth Prediction Based on Deep Learning Approach

Table 8

The l-test results at China.

ComparisonMAPEMAERMSE
valuel-interval valuel-interval valuel-interval

DLM vs. SVR + F0.0007−6.24, ∞0.0018−119,022, ∞0.0004−150,781, ∞
DLM vs. ANN + F0.0015−9.08, ∞0.0019−171,432, ∞0.0015−217,779, ∞
DLM vs. ANN0.0148−18.5, ∞0.0121−298,133, ∞0.0074−322,915, ∞
DLM vs. SVR0.0019−11.24, ∞0.0033−206,089, ∞0.0022−239,332, ∞
DLM vs. ARIMA0.0015−9.81, ∞0.0006−161,044, ∞0.0003−185,229, ∞
DLM vs. Naive0.0068−10.22, ∞0.0093−182,015, ∞0.0059−202,661, ∞