Research Article
Improving the Performance of Deep Learning Model-Based Classification by the Analysis of Local Probability
Table 6
The result of random probability on CIFAR-100 and Mini-ImageNet with fusion operators.
| Local probability | Methods | ResNeSt50 [26] | VGG16 (%) [25] | VoVNet-57 (%) [24] | CC-KL trainable (%) [27] | CC-KL trainable with our framework (%) |
| CIFAR-100, Rand (0, 1) | 41.93 | 46.19 | 63.98 | 65.52 | 66.27 | CIFAR-100, Rand (−1, 1) | 41.83 | 46.21 | 63.78 | 65.57 | 74.93 | CIFAR-100, Rand (−2, 1) | 42.03 | 46.35 | 63.42 | 66.16 | 77.02 | Mini-ImageNet, Rand (0, 1) | 40.34 | 44.54 | 72.65 | 73.39 | 74.55 | Mini-ImageNet, Rand (−1, 1) | 40.64 | 44.84 | 72.58 | 73.47 | 81.23 | Mini-ImageNet, Rand (−2, 1) | 41.04 | 45.01 | 72.47 | 74.45 | 85.48 |
|
|