Research Article
Trust in Intrusion Detection Systems: An Investigation of Performance Analysis for Machine Learning and Deep Learning Models
Table 13
The performance of deep learning for WSN dataset using LSTM and GRU with selected features.
| Model | Evaluation metric | Cross-validation performance | Testing performance | Normal | Grayhole | Blackhole | Scheduling | Flooding | Normal | Grayhole | Blackhole | Scheduling | Flooding |
| LSTM with one layer | TN | 98.59 | 99.91 | 99.48 | 96 | 99.93 | 98.50 | 99.92 | 99.73 | 96.61 | 99.99 | FP | 1.41 | 0.09 | 0.52 | 4 | 0.07 | 1.50 | 0.08 | 0.27 | 3.39 | 0.01 | FN | 6.82 | 8.5 | 39.19 | 0.47 | 9.9 | 1.63 | 5.19 | 40.12 | 0.33 | 9.22 | Accuracy | 98.45 | 99.84 | 97.98 | 99.21 | 99.76 | 98.50 | 99.88 | 98.18 | 99.39 | 99.83 | Precision | 64.84 | 90.6 | 83.37 | 99.59 | 96.08 | 64.42 | 91.49 | 89.92 | 99.66 | 99.47 | Recall | 93.18 | 91.5 | 60.81 | 99.53 | 90.1 | 98.37 | 94.81 | 59.88 | 99.67 | 90.78 | F-score | 76.2 | 91.02 | 69.98 | 99.56 | 92.98 | 77.85 | 93.12 | 71.89 | 99.66 | 94.93 |
| LSTM with two layer | TN | 98.41 | 99.9 | 99.17 | 94.62 | 99.92 | 98.48 | 99.91 | 99.25 | 94.51 | 99.88 | FP | 1.59 | 0.1 | 0.83 | 5.38 | 0.08 | 1.52 | 0.09 | 0.75 | 5.49 | 0.12 | FN | 3.3 | 13.3 | 42.91 | 0.83 | 21.43 | 5.10 | 4.11 | 42.50 | 0.80 | 19.88 | Accuracy | 98.37 | 99.79 | 97.53 | 98.75 | 99.54 | 98.38 | 99.87 | 97.62 | 98.76 | 99.53 | Precision | 62.68 | 89.59 | 73.95 | 99.45 | 94.85 | 63.25 | 90.43 | 75.66 | 99.44 | 92.62 | Recall | 96.7 | 86.7 | 57.09 | 99.17 | 78.57 | 94.90 | 95.89 | 57.50 | 99.20 | 80.12 | F-score | 76.04 | 87.68 | 64.37 | 99.31 | 85.85 | 75.91 | 93.08 | 65.34 | 99.32 | 85.92 |
| GRU with one layer | TN | 99.08 | 99.91 | 99.3 | 97.85 | 99.99 | 98.62 | 99.93 | 99.78 | 97.91 | 99.99 | FP | 0.92 | 0.09 | 0.7 | 2.15 | 0.01 | 1.38 | 0.07 | 0.22 | 2.09 | 0.01 | FN | 21.71 | 3.26 | 23.88 | 0.21 | 7.73 | 3.42 | 6.28 | 34.23 | 0.22 | 7.89 | Accuracy | 98.52 | 99.88 | 98.4 | 99.61 | 99.85 | 98.57 | 99.87 | 98.46 | 99.60 | 99.85 | Precision | 72.69 | 90.36 | 83.72 | 99.78 | 99.27 | 65.87 | 91.94 | 92.49 | 99.79 | 99.61 | Recall | 78.29 | 96.74 | 76.12 | 99.79 | 92.27 | 96.58 | 93.72 | 65.77 | 99.78 | 92.11 | F-score | 72.62 | 93.43 | 78.58 | 99.78 | 95.64 | 78.32 | 92.82 | 76.87 | 99.78 | 95.7 |
| GRU with two layer | TN | 98.53 | 99.93 | 99.25 | 89.1 | 99.81 | 98.65 | 99.91 | 99.49 | 94.11 | 99.82 | FP | 1.47 | 0.07 | 0.75 | 10.9 | 0.19 | 1.35 | 0.09 | 0.51 | 5.89 | 0.18 | FN | 5.85 | 39.26 | 53.04 | 0.54 | 19.99 | 7.44 | 9.78 | 42.09 | 0.49 | 13.73 | Accuracy | 98.41 | 99.59 | 97.21 | 98.5 | 99.46 | 98.49 | 99.83 | 97.87 | 99.01 | 99.58 | Precision | 63.87 | 88.58 | 72.01 | 98.9 | 88.16 | 65.44 | 90.33 | 82.06 | 99.40 | 89.44 | Recall | 94.15 | 60.74 | 46.96 | 99.46 | 80.01 | 92.56 | 90.22 | 57.91 | 99.51 | 86.27 | F-score | 76.09 | 79.73 | 56.78 | 99.18 | 83.85 | 76.67 | 90.27 | 67.90 | 99.46 | 87.83 |
|
|