Research Article
Trust in Intrusion Detection Systems: An Investigation of Performance Analysis for Machine Learning and Deep Learning Models
Table 2
Statistical analysis of WSN-DS dataset.
| Feature No | Feature name | Count | Mean | std | min | 25% | 50% | 75% | Max |
| 1 | Time | 374661 | 1064.749 | 899.6462 | 50 | 353 | 803 | 1503 | 3600 | 2 | Is_CH | 374661 | 0.115766 | 0.319945 | 0 | 0 | 0 | 0 | 1 | 3 | who_CH | 374661 | 274980.4 | 389911.2 | 101000 | 107096 | 116072 | 215073 | 3402100 | 4 | Dist_To_CH | 374661 | 22.59938 | 21.95579 | 0 | 4.73544 | 18.37261 | 33.776 | 214.2746 | 5 | ADV_S | 374661 | 0.267698 | 2.061148 | 0 | 0 | 0 | 0 | 97 | 6 | ADV_R | 374661 | 6.940562 | 7.044319 | 0 | 3 | 5 | 7 | 117 | 7 | JOIN_S | 374661 | 0.779905 | 0.414311 | 0 | 1 | 1 | 1 | 1 | 8 | JOIN_R | 374661 | 0.737493 | 4.691498 | 0 | 0 | 0 | 0 | 124 | 9 | SCH_S | 374661 | 0.288984 | 2.754746 | 0 | 0 | 0 | 0 | 99 | 10 | SCH_R | 374661 | 0.747452 | 0.434475 | 0 | 0 | 1 | 1 | 1 | 11 | Rank | 374661 | 9.687104 | 14.6819 | 0 | 1 | 3 | 13 | 99 | 12 | DATA_S | 374661 | 44.85792 | 42.57446 | 0 | 13 | 35 | 62 | 241 | 13 | DATA_R | 374661 | 73.89004 | 230.2463 | 0 | 0 | 0 | 0 | 1496 | 14 | Data_Sent_To_BS | 374661 | 4.569448 | 19.67916 | 0 | 0 | 0 | 0 | 241 | 15 | dist_CH_To_BS | 374661 | 22.56274 | 50.2616 | 0 | 0 | 0 | 0 | 201.9349 | 16 | send_code | 374661 | 2.497957 | 2.407337 | 0 | 1 | 2 | 4 | 15 | 17 | Consumed energy | 374661 | 0.305661 | 0.669462 | 0 | 0.05615 | 0.09797 | 0.21776 | 45.09394 | 18 | Attack type | 374661 | 2.880615 | 0.564958 | 0 | 3 | 3 | 3 | 4 |
|
|