Research Article
Decision Tree Ensembles to Predict Coronavirus Disease 2019 Infection: A Comparative Study
Table 5
The performance (AUROC) of various ensembles of decision trees for different sizes of ensembles.
| Ensemble | Size | 20 | 50 | 100 | 200 |
| Random forest | 0.852 | 0.872 | 0.882 | 0.876 | Bagging | 0.859 | 0.858 | 0.856 | 0.857 | XGBoost | 0.863 | 0.864 | 0.867 | 0.868 | AdaBoost | 0.827 | 0.844 | 0.850 | 0.855 | Ensembles for imbalanced datasets | Balanced random Forest (RUS) | 0.871 | 0.879 | 0.889 | 0.893 | SmoteBagging | 0.857 | 0.846 | 0.854 | 0.859 | RUSBagging | 0.874 | 0.881 | 0.880 | 0.883 | SmoteBoost | 0.853 | 0.849 | 0.864 | 0.864 | RUSBoost | 0.7516 | 0.716 | 0.717 | 0.715 |
|
|
Bold numbers show the best performance.
|