Research Article

Harmonic Classification with Enhancing Music Using Deep Learning Techniques

Table 4

Results of various training configurations of proposed model systems.

Text setsMethodTrain setWeightedCorrectFifthRelativeParallelOther

GSCK1GSMTG75.368.26.87.14.314.1
CK2BBTV57.647.56.712.816.817.7
CK3GSMTG and BBTV69.561.66.98.76.516.6
EDMA65.957.47.66.811.017.8
EDMM70.463.58.82.66.518.7
EDMT44.933.98.715.79.732.5
QM50.839.812.013.54.931.3

BBTECK1GSMTG72.962.87.813.412.74.4
CK2BBTV84.077.49.25.14.55.0
CK3GSMTG and BBTV80.071.09.99.36.64.2
EDMA78.970.811.63.05.89.3
EDMM30.014.82.416.342.225.2
EDMT75.866.912.76.52.912.0
QM61.052.311.94.48.523.9