Research Article

Comparing the Forecast Performance of Advanced Statistical and Machine Learning Techniques Using Huge Big Data: Evidence from Monte Carlo Experiments

Table 1

Forecast comparison under multicollinearity from Monte Carlo simulation (Scenario 1).

Modelsρ = 0.25,  = 50ρ = 0.25,  = 70

n = 100/200/400RMSEMAERMSEMAE
MCP1.123/1.055/1.0270.908/0.848/0.8211.205/1.069/1.0310.971/0.858/0.825
E-SCAD1.135/1.066/1.0340.917/0.856/0.8271.195/1.086/1.0400.961/0.872/0.831
Autometrics1.316/1.091/1.0271.065/0.874/0.8221.316/1.091/1.0421.065/0.874/0.834
FM_PCA3.517/3.210/2.8292.839/2.576/2.2604.493/4.305/3.9663.623/3.458/3.173
FM_PLS1.528/1.200/1.0901.235/0.963/0.8711.921/1.321/1.1261.551/1.059/0.901

n = 100/200/400ρ = 0.5,  = 50ρ = 0.5,  = 70
MCP1.145/1.056/1.0270.925/0.848/0.8211.318/1.069/1.0321.062/0.858/0.825
E-SCAD1.112/1.058/1.0300.898/0.849/0.8241.168/1.074/1.0350.940/0.862/0.827
Autometrics1.156/1.062/1.0270.931/0.853/0.8211.473/1.091/1.0411.191/0.874/0.833
FM_PCA2.583/2.053/1.7052.088/1.644/1.3653.933/3.334/2.7003.174/2.677/2.164
FM_PLS1.368/1.161/1.0801.105/0.932/0.8641.595/1.248/1.1081.287/1.001/0.886

n = 100/200/400ρ = 0.9,  = 50ρ = 0.9,  = 70
MCP1.484/1.157/1.0421.198/0.930/0.8321.764/1.261/1.0581.424/1.013/0.846
E-SCAD1.201/1.060/1.0190.968/0.851/0.8141.291/1.080/1.0211.040/0.867/0.817
Autometrics4.363/1.795/1.0313.528/1.443/0.8256.589/2.501/1.0535.333/2.006/0.843
FM_PCA1.169/1.099/1.0750.943/0.883/0.8591.318/1.212/1.1651.065/0.974/0.932
FM_PLS1.138/1.078/1.0430.919/0.865/0.8341.184/1.095/1.0530.959/0.880/0.842

Note. Bold values indicate a better forecast.