Research Article
Comparing the Forecast Performance of Advanced Statistical and Machine Learning Techniques Using Huge Big Data: Evidence from Monte Carlo Experiments
Table 1
Forecast comparison under multicollinearity from Monte Carlo simulation (Scenario 1).
| Models | ρ = 0.25, = 50 | ρ = 0.25, = 70 |
| n = 100/200/400 | RMSE | MAE | RMSE | MAE | MCP | 1.123/1.055/1.027 | 0.908/0.848/0.821 | 1.205/1.069/1.031 | 0.971/0.858/0.825 | E-SCAD | 1.135/1.066/1.034 | 0.917/0.856/0.827 | 1.195/1.086/1.040 | 0.961/0.872/0.831 | Autometrics | 1.316/1.091/1.027 | 1.065/0.874/0.822 | 1.316/1.091/1.042 | 1.065/0.874/0.834 | FM_PCA | 3.517/3.210/2.829 | 2.839/2.576/2.260 | 4.493/4.305/3.966 | 3.623/3.458/3.173 | FM_PLS | 1.528/1.200/1.090 | 1.235/0.963/0.871 | 1.921/1.321/1.126 | 1.551/1.059/0.901 |
| n = 100/200/400 | ρ = 0.5, = 50 | ρ = 0.5, = 70 | MCP | 1.145/1.056/1.027 | 0.925/0.848/0.821 | 1.318/1.069/1.032 | 1.062/0.858/0.825 | E-SCAD | 1.112/1.058/1.030 | 0.898/0.849/0.824 | 1.168/1.074/1.035 | 0.940/0.862/0.827 | Autometrics | 1.156/1.062/1.027 | 0.931/0.853/0.821 | 1.473/1.091/1.041 | 1.191/0.874/0.833 | FM_PCA | 2.583/2.053/1.705 | 2.088/1.644/1.365 | 3.933/3.334/2.700 | 3.174/2.677/2.164 | FM_PLS | 1.368/1.161/1.080 | 1.105/0.932/0.864 | 1.595/1.248/1.108 | 1.287/1.001/0.886 |
| n = 100/200/400 | ρ = 0.9, = 50 | ρ = 0.9, = 70 | MCP | 1.484/1.157/1.042 | 1.198/0.930/0.832 | 1.764/1.261/1.058 | 1.424/1.013/0.846 | E-SCAD | 1.201/1.060/1.019 | 0.968/0.851/0.814 | 1.291/1.080/1.021 | 1.040/0.867/0.817 | Autometrics | 4.363/1.795/1.031 | 3.528/1.443/0.825 | 6.589/2.501/1.053 | 5.333/2.006/0.843 | FM_PCA | 1.169/1.099/1.075 | 0.943/0.883/0.859 | 1.318/1.212/1.165 | 1.065/0.974/0.932 | FM_PLS | 1.138/1.078/1.043 | 0.919/0.865/0.834 | 1.184/1.095/1.053 | 0.959/0.880/0.842 |
|
|
Note. Bold values indicate a better forecast.
|