Research Article
Comparing the Forecast Performance of Advanced Statistical and Machine Learning Techniques Using Huge Big Data: Evidence from Monte Carlo Experiments
Table 2
Forecast comparison under heteroscedasticity from Monte Carlo simulation (Scenario 2).
| Models | σ = 0.1/0.3, = 50 | σ = 0.1/0.3, = 70 |
| n = 100/200/400 | RMSE | MAE | RMSE | MAE | MCP | 0.313/0.306/0.303 | 0.253/0.246/0.242 | 0.321/0.307/0.303 | 0.260/0.246/0.242 | E-SCAD | 0.319/0.309/0.304 | 0.258/0.248/0.243 | 0.331/0.311/0.305 | 0.267/0.249/0.243 | Autometrics | 0.318/0.308/0.303 | 0.256/0.248/0.242 | 0.339/0.313/0.305 | 0.274/0.250/0.244 | FM_PCA | 3.373/3.055/2.648 | 2.723/2.452/2.115 | 4.382/4.197/3.847 | 3.534/3.374/3.078 | FM_PLS | 0.399/0.327/0.311 | 0.322/0.262/0.249 | 0.625/0.347/0.317 | 0.504/0.278/0.253 |
| n = 100/200/400 | σ = 0.2/0.6, = 50 | σ = 0.2/0.6, = 70 | MCP | 0.627/0.613/0.606 | 0.507/0.492/0.484 | 0.643/0.614/0.607 | 0.520/0.492/0.485 | E-SCAD | 0.637/0.617/0.609 | 0.515/0.496/0.486 | 0.659/0.621/0.609 | 0.532/0.498/0.487 | Autometrics | 0.636/0.617/0.606 | 0.512/0.496/0.484 | 0.667/0.625/0.610 | 0.548/0.501/0.488 | FM_PCA | 3.410/3.101/2.704 | 2.753/2.489/2.160 | 4.412/4.233/3.883 | 3.556/3.402/3.106 | FM_PLS | 0.798/0.654/0.623 | 0.646/0.525/0.498 | 1.107/0.693/0.634 | 0.892/0.556/0.507 |
| n = 100/200/400 | σ = 0.3/0.9, = 50 | σ = 0.3/0.9, = 70 | MCP | 0.941/0.920/0.909 | 0.761/0.739/0.727 | 0.965/0.921/0.910 | 0.780/0.739/0.728 | E-SCAD | 0.954/0.926/0.913 | 0.771/0.743/0.730 | 0.985/0.930/0.914 | 0.795/0.746/0.730 | Autometrics | 0.954/0.926/0.909 | 0.768/0.744/0.727 | 1.017/0.938/0.916 | 0.823/0.752/0.733 | FM_PCA | 3.478/3.176/2.791 | 2.809/2.549/2.230 | 4.467/4.281/3.941 | 3.601/3.440/3.153 | FM_PLS | 1.181/0.983/0.935 | 0.956/0.789/0.748 | 1.507/1.040/0.951 | 1.215/0.834/0.760 |
|
|
Note. Bold values indicate a better forecast.
|