Research Article

Comparing the Forecast Performance of Advanced Statistical and Machine Learning Techniques Using Huge Big Data: Evidence from Monte Carlo Experiments

Table 2

Forecast comparison under heteroscedasticity from Monte Carlo simulation (Scenario 2).

Modelsσ = 0.1/0.3,  = 50σ = 0.1/0.3,  = 70

n = 100/200/400RMSEMAERMSEMAE
MCP0.313/0.306/0.3030.253/0.246/0.2420.321/0.307/0.3030.260/0.246/0.242
E-SCAD0.319/0.309/0.3040.258/0.248/0.2430.331/0.311/0.3050.267/0.249/0.243
Autometrics0.318/0.308/0.3030.256/0.248/0.2420.339/0.313/0.3050.274/0.250/0.244
FM_PCA3.373/3.055/2.6482.723/2.452/2.1154.382/4.197/3.8473.534/3.374/3.078
FM_PLS0.399/0.327/0.3110.322/0.262/0.2490.625/0.347/0.3170.504/0.278/0.253

n = 100/200/400σ = 0.2/0.6,  = 50σ = 0.2/0.6,  = 70
MCP0.627/0.613/0.6060.507/0.492/0.4840.643/0.614/0.6070.520/0.492/0.485
E-SCAD0.637/0.617/0.6090.515/0.496/0.4860.659/0.621/0.6090.532/0.498/0.487
Autometrics0.636/0.617/0.6060.512/0.496/0.4840.667/0.625/0.6100.548/0.501/0.488
FM_PCA3.410/3.101/2.7042.753/2.489/2.1604.412/4.233/3.8833.556/3.402/3.106
FM_PLS0.798/0.654/0.6230.646/0.525/0.4981.107/0.693/0.6340.892/0.556/0.507

n = 100/200/400σ = 0.3/0.9,  = 50σ = 0.3/0.9,  = 70
MCP0.941/0.920/0.9090.761/0.739/0.7270.965/0.921/0.9100.780/0.739/0.728
E-SCAD0.954/0.926/0.9130.771/0.743/0.7300.985/0.930/0.9140.795/0.746/0.730
Autometrics0.954/0.926/0.9090.768/0.744/0.7271.017/0.938/0.9160.823/0.752/0.733
FM_PCA3.478/3.176/2.7912.809/2.549/2.2304.467/4.281/3.9413.601/3.440/3.153
FM_PLS1.181/0.983/0.9350.956/0.789/0.7481.507/1.040/0.9511.215/0.834/0.760

Note. Bold values indicate a better forecast.