Research Article

Comparing the Forecast Performance of Advanced Statistical and Machine Learning Techniques Using Huge Big Data: Evidence from Monte Carlo Experiments

Table 3

Forecast comparison under autocorrelation from Monte Carlo simulation (Scenario 3).

Modelsρ = 0.25,  = 50ρ = 0.25,  = 70

n = 100/200/400RMSEMAERMSEMAE
MCP1.167/1.078/1.0560.943/0.866/0.8451.254/1.110/1.0651.012/0.892/0.851
E-SCAD1.175/1.091/1.0620.952/0.877/0.8501.241/1.124/1.0741.002/0.904/0.859
Autometrics1.192/1.100/1.0640.963/0.884/0.8511.392/1.126/1.0711.121/0.908/0.858
FM_PCA3.520/3.222/2.8582.848/2.589/2.2884.569/4.274/3.9523.695/3.429/3.165
FM_PLS1.568/1.231/1.1191.268/0.990/0.8961.972/1.367/1.1661.591/1.101/0.932

n = 100/200/400ρ = 0.50,  = 50ρ = 0.50,  = 70
MCP1.324/1.222/1.1851.073/0.987/0.9491.448/1.234/1.1971.177/0.993/0.957
E-SCAD1.318/1.238/1.1911.068/0.996/0.9541.382/1.248/1.2061.122/1.005/0.965
Autometrics1.330/1.222/1.1871.080/0.985/0.9511.630/1.255/1.2021.318/1.011/0.964
FM_PCA3.570/3.279/2.9162.889/2.624/2.3334.607/4.247/4.0213.716/3.381/3.219
FM_PLS1.720/1.392/1.2581.389/1.121/1.0052.108/1.503/1.3031.702/1.206/1.042

n = 100/200/400ρ = 0.90,  = 50ρ = 0.90,  = 70
MCP2.953/2.408/2.3642.449/1.997/1.9363.608/2.538/2.3682.961/2.100/1.940
E-SCAD2.714/2.380/2.3662.267/1.976/1.9373.039/2.498/2.3702.525/2.069/1.941
Autometrics3.250/2.480/2.3582.693/2.049/1.9304.273/2.594/2.3943.494/2.146/1.957
FM_PCA4.165/3.871/3.5633.387/3.126/2.8685.051/4.735/4.5064.111/3.810/3.609
FM_PLS2.941/2.579/2.4762.439/2.122/2.0203.341/2.796/2.5442.749/2.293/2.072

Note. Bold values indicate a better forecast.