Research Article

Convolutional Neural Network Based Vehicle Classification in Adverse Illuminous Conditions for Intelligent Transportation Systems

Table 1

Architecture of modified CNN.

Layer nameOutput sizeLayers

Conv 1112 × 112Kernel size = 7 × 7, number of kernels = 64, stride = 2
Pooling56 × 56Kernel size = 3 × 3, stride = 2
Conv 256 × 56 × 3
Conv 328 × 28 × 3
Conv 414 × 14 × 3
Conv 57 × 7 × 3
Pooling1 × 1Adaptive-average-pooling 2d
Proposed classification blockfc1: In-features = 2048, out-feature = 1024
Relu (in-place)
drop-out(0.5)
fc2: In-features = 1024, out-features = 6
Softmax()
Classification output (cross entropy)