Research Article

Use of BP Neural Networks to Determine China’s Regional CO2 Emission Quota

Table 8

Comparison between model results and historical quotas.

YearRegionHistorical quotasBenchmark modelNew model
Training resultsLossTraining resultsLoss

2014Beijing0.50.51140.01140.5020.002
Tianjing1.61.73970.13971.584−0.016
Shanghai1.51.77950.27951.4785−0.0215
Hubei3.243.0159−0.22413.24850.0085
Guangdong3.883.6819−0.19813.8754−0.0046
Shenzhen0.330.36230.03230.3169−0.0131
Chongqing1.31.32830.02831.2949−0.0051

2015Beijing0.50.54410.04410.51440.0144
Tianjing1.61.73120.13121.61690.0169
Shanghai1.61.67280.07281.62140.0214
Hubei3.243.0162−0.22383.1589−0.0811
Guangdong4.083.8977−0.18234.0595−0.0205
Shenzhen0.330.36230.03230.3182−0.0118
Chongqing1.251.4190.1691.30370.0537

2016Beijing0.50.4536−0.04640.4882−0.0118
Tianjing1.61.5162−0.08381.5506−0.0494
Shanghai1.51.4923−0.00771.50990.0099
Hubei2.82.93840.13842.87150.0715
Guangdong44.05520.05524.01410.0141
Shenzhen0.30.36360.06360.32090.0209
Chongqing1.31.41760.11761.2564−0.0436

2017Beijing0.50.3623−0.13770.4946−0.0054
Tianjing1.61.363−0.2371.63990.0399
Shanghai1.61.2582−0.34181.5741−0.0259
Hubei2.52.58910.08912.4883−0.0117
Guangdong4.24.50110.30114.2080.008
Shenzhen0.30.36230.06230.30430.0043
Chongqing1.31.2166−0.08341.2883−0.0117

Unit of quotas: 100 million tons.