Research Article
Use of BP Neural Networks to Determine China’s Regional CO2 Emission Quota
Table 8
Comparison between model results and historical quotas.
| | Year | Region | Historical quotas | Benchmark model | New model | | Training results | Loss | Training results | Loss |
| | 2014 | Beijing | 0.5 | 0.5114 | 0.0114 | 0.502 | 0.002 | | Tianjing | 1.6 | 1.7397 | 0.1397 | 1.584 | −0.016 | | Shanghai | 1.5 | 1.7795 | 0.2795 | 1.4785 | −0.0215 | | Hubei | 3.24 | 3.0159 | −0.2241 | 3.2485 | 0.0085 | | Guangdong | 3.88 | 3.6819 | −0.1981 | 3.8754 | −0.0046 | | Shenzhen | 0.33 | 0.3623 | 0.0323 | 0.3169 | −0.0131 | | Chongqing | 1.3 | 1.3283 | 0.0283 | 1.2949 | −0.0051 |
| | 2015 | Beijing | 0.5 | 0.5441 | 0.0441 | 0.5144 | 0.0144 | | Tianjing | 1.6 | 1.7312 | 0.1312 | 1.6169 | 0.0169 | | Shanghai | 1.6 | 1.6728 | 0.0728 | 1.6214 | 0.0214 | | Hubei | 3.24 | 3.0162 | −0.2238 | 3.1589 | −0.0811 | | Guangdong | 4.08 | 3.8977 | −0.1823 | 4.0595 | −0.0205 | | Shenzhen | 0.33 | 0.3623 | 0.0323 | 0.3182 | −0.0118 | | Chongqing | 1.25 | 1.419 | 0.169 | 1.3037 | 0.0537 |
| | 2016 | Beijing | 0.5 | 0.4536 | −0.0464 | 0.4882 | −0.0118 | | Tianjing | 1.6 | 1.5162 | −0.0838 | 1.5506 | −0.0494 | | Shanghai | 1.5 | 1.4923 | −0.0077 | 1.5099 | 0.0099 | | Hubei | 2.8 | 2.9384 | 0.1384 | 2.8715 | 0.0715 | | Guangdong | 4 | 4.0552 | 0.0552 | 4.0141 | 0.0141 | | Shenzhen | 0.3 | 0.3636 | 0.0636 | 0.3209 | 0.0209 | | Chongqing | 1.3 | 1.4176 | 0.1176 | 1.2564 | −0.0436 |
| | 2017 | Beijing | 0.5 | 0.3623 | −0.1377 | 0.4946 | −0.0054 | | Tianjing | 1.6 | 1.363 | −0.237 | 1.6399 | 0.0399 | | Shanghai | 1.6 | 1.2582 | −0.3418 | 1.5741 | −0.0259 | | Hubei | 2.5 | 2.5891 | 0.0891 | 2.4883 | −0.0117 | | Guangdong | 4.2 | 4.5011 | 0.3011 | 4.208 | 0.008 | | Shenzhen | 0.3 | 0.3623 | 0.0623 | 0.3043 | 0.0043 | | Chongqing | 1.3 | 1.2166 | −0.0834 | 1.2883 | −0.0117 |
|
|
Unit of quotas: 100 million tons.
|