Complexity / 2021 / Article / Tab 10 / Research Article
A Novel MILP Model for the Production, Lot Sizing, and Scheduling of Automotive Plastic Components on Parallel Flexible Injection Machines with Setup Common Operators Table 10 Experimental results for the MILP model for lot sizing and scheduling on parallel flexible injection machines.
Dataset I J K T Number of constraints Number of variables Number of binary variables Number of integer variables Number of continuous variables Number of nonzeros Objective value Termination condition Time (sec) GAP (%) S1 2 4 6 3 253 180 48 48 84 548 30699918 Optimal 0.15767312 0.00 S2 4 6 8 3 529 360 144 144 72 1240 13400191 Optimal 0.13881159 0.00 S3 6 8 16 3 1037 720 288 288 144 2672 11100467 Optimal 0.13907146 0.00 S4 8 10 22 3 1617 1116 480 480 156 4372 8100579 Optimal 0.13229871 0.00 M1 10 12 24 14 10882 7056 3360 3360 336 29232 75400153.9 Optimal 12.6211112 0.00 M2 12 14 28 14 14630 9408 4704 4704 0 39872 162199368 Optimal 11.8187988 0.00 M3 14 16 32 14 18930 12096 6272 6272 −448 52160 129000642 Optimal 6.2376368 0.00 M4 16 18 36 14 23782 15120 8064 8064 −1008 66096 109300097 Optimal 12.3485208 0.00 L1 18 20 40 14 29186 18480 10080 10080 −1680 81680 226999024 Optimal 44.0416777 0.00 L2 20 40 60 14 61754 38640 22400 22400 −6160 164880 698898867 maxTimeLimit 10801.9226 0.53 L3 25 45 70 14 85269 53130 31500 31500 −9870 230910 889697348 maxTimeLimit 18000.7021 1.23 L4 30 50 80 21 169221 104580 63000 63000 −21420 462680 764199835 maxTimeLimit 18025.0699 0.32