Complexity / 2021 / Article / Tab 11 / Research Article
A Novel MILP Model for the Production, Lot Sizing, and Scheduling of Automotive Plastic Components on Parallel Flexible Injection Machines with Setup Common Operators Table 11 Experimental results for the MILP model for lot sizing and scheduling on parallel flexible injection machines with setup common operators.
Dataset I J K L T Number of constraints Number of variables Number of binary variables Number of integer variables Number of continuous variables Number of nonzeros Objective value Termination condition Time (sec) GAP (%) S1 2 4 6 2 3 392 228 96 96 36 880 30700163 Optimal 0.09 0.00 S2 4 6 8 2 3 904 504 288 288 −72 2224 9700582 Optimal 1.41 0.00 S3 6 8 16 2 3 1760 1008 576 576 −144 4736 23500652 Optimal 0.16 0.00 S4 8 10 22 2 3 2800 1596 960 960 −324 7860 18901051 Optimal 0.16 0.00 M1 10 12 24 4 14 36744 17136 13440 13440 −9744 100032 67803541 Optimal 19.20 0.00 M2 12 14 28 4 14 50596 23520 18816 18816 −14112 138992 99203043 Optimal 13.08 0.00 M3 14 16 32 4 14 66656 30912 25088 25088 −19264 184320 143003146 Optimal 39.02 0.00 M4 16 18 36 4 14 84924 39312 32256 32256 −25200 236016 146304008 Optimal 77.73 0.00 L1 18 20 40 6 14 156200 68880 60480 60480 −52080 432320 211505838 Optimal 208.83 0.00 L2 20 40 60 8 14 454244 195440 179200 179200 −162960 1212080 878439687 maxTimeLimit 10816.94 3.05 L3 25 45 70 12 14 950246 399630 378000 378000 −356370 2545660 912365839.8 maxTimeLimit 18032.57 4.47 L4 30 60 120 15 14 1893720 791280 756000 756000 −720720 5256960 1367518374 maxTimeLimit 10901.30 5.11